[

TR-069
CPE WAN Management Protocol v1.1

Version: Issue 1 Amendment 2
Version Date: December 2007

© 2007 The Broadband Forum. All rights reserved.

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network
system development and deployment. This Technical Report has been approved by members of the Forum.
This document is not binding on the Broadband Forum, any of its members, or any developer or service
provider. This document is subject to change, but only with approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a copyright in this document, or any
portion thereof, disclaims to the fullest extent permitted by law any representation or warranty, express or
implied, including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose, non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any purpose, even if that purpose is
known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation will not infringe any third
party patents, copyrights, trademarks or other rights.

This publication may incorporate intellectual property. The Broadband Forum encourages but does not
require declaration of such intellectual property. For a list of declarations made by Broadband Forum
member companies, please see www.broadband-forum.org.

December 2007 © The Broadband Forum. All rights reserved. 2

CPE WAN Management Protocol v1.1

Version History

TR-069 Issue 1 Amendment 2

Amendment 2

Davide Moreo, Telecom Italia

Version Version Date Version Editor Changes
Number
Issue 1 May 2004 Jeff Bernstein, 2Wire Issue 1
Tim Spets, Westell
Issue 1 November 2006 Jeff Bernstein, 2Wire Clarification of original document
Amendment 1 John Blackford, 2Wire
Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire
Anton Okmianski, Cisco
Issue 1 November 2007 William Lupton, 2Wire CWMP v1.1: Multicast Download

support, 10 AUTONOMOUS
TRANSFER COMPLETE event,
AutonomousTransferComplete method,
additional Download fault codes,
interoperability clarifications, minor
editorial changes.

Technical comments or questions about this document should be directed to:

Editors

BroadbandHome™
Technical Working
Group
Chairs

December 2007

William Lupton
John Blackford
Mike Digdon
Tim Spets

Greg Bathrick
Heather Kirksey

© The Broadband Forum. All rights reserved.

2Wire
2Wire
SupportSoft
Westell

PMC-Sierra
Motive

wlupton@?2wire.com
jblackford@2wire.com

mike.digdon@supportsoft.com
tspets@westell.com

Greg_Bathrick@pmc-sierra.com

hkirksey@motive.com

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Contents
N 1o Vi o o [0 T o o OSSPSR PRRTRN
11 Functional Components

1.1.1 Auto-Configuration and Dynamic Service Provisioning

1.1.2 Software/Firmware Image Managementcoooviiiiiiee i
1.1.3 Status and Performance Monitoring...............
1.1.4 DIagnOSHCS ..vvvveeeeeiiiiiiiieie e
1.15 Identity Management for Web Applications....
1.2 Positioning in the End-to-End Architecture...................
1.3 SECUNMLY GOAIS ...cceiiiiiiiiiiiiie e
1.4 Architectural Goals...........
15 Assumptions...........c.c.......
1.6 Terminology..........ccccoveee.
1.7 DOCUMENE CONVENTIONSiiiiiiie ittt ettt et et e e s e e e bb e e e nabr e e e nnees
P N (o] 11 =T ox (1 =TT TP T PO PP U RO U R PUPOT PP
21 ProtoCOl COMPONENTS ...ttt e e e ettt e e e e e ettt et e e e e e e antbeeeaaaeeaaneneeeeaaaanns
2.2 Security Mechanisms
2.3 ArchiteCtural COMPONENTSciiiiieiiiiie et e e e e st e e s e e e s anreeens
2.3.1 Parametersoooiiiiiiiiiii
232 FileTransfers......ccoceviiinnnns
233 CPE Initiated Sessions
2.3.4 Asynchronous ACS Initiated SESSIONScciiiiiiiiiiiiiiiee i

3 Procedures and Requirements

3.1 ACS Discoveryccccceeeeenne
3.2 Connection Establishment
3.2.1 CPE Connection Initiation
3.2.2 ACS Connection Initiation
3.3 Use of SSL/TLS and TCP..........cceeeeee.e.
3.4 (O LYo i = 1 I ST
34.1 ENcoding SOAP OVEN HTTPuiiiiiiii ettt
3.4.2 Transaction Sessions
3.4.3 File Transfers ...
3.4.4 AUTNENTICALION ...ttt e e e e e e e et e e e e e e e easaa e e eeeeeneees
345 Digest Authentication
3.4.6 Additional HTTP ReQUIFEMENTSuuiiiiiaiiiiiiii ettt e e e e e ee e e e e e e ennees
35 USE OF SOAP ettt e e e ettt et e e e e et e e e e e e e e et e e e e e e e e aa e aaaaaaaaaan
3.6 RPC Support Requirements...................
3.7 Transaction Session Procedures
3.7.1 CPE Operation..........ccccvvvevennn.
3.7.2 ACS Operation.............cceuvvveenn.
3.7.3 Transaction EXAmMIPIES.........eeiiiiiiiiiii e
NOIMALIVE REFEIEINCES ...ttt et e e e e e et e e e e e e ee ettt e e e e e e e sata e s aeeseeesssbaaeaeeeeseesssans
Annex A. R S O 1= { a To Yo F OO PPUPPT PR
A.1 Introduction................
A.2 RPC Method Usagec...........
A.2.1 Data TYpeS.....cccccurrrrererenns
A.2.2 Other Requirements
A.3 BaSEliNE RPC IMESSAGES .. .coiiieeiiiiieei ittt e e ettt e e e e e et ettt e e e e e s bbbt e e e e e e e aaa b bbb e e e e e e e aasnbbreeeeesnbbeeeeeens
A.3.1 Generic MethodsSceveeeeeiiiiiininnnnn..
A.3.1.1 GetRPCMethods..........ccceennnn.
A.3.2 CPE Methodsccccvvvvvvninininiinnininnnnnnnns
A.3.2.1 SetParameterValues................
A.3.2.2 GetParameterValues................
A.3.2.3 GetParameterNames...............

A.3.2.4 SetParameterAttributes
A.3.2.5 GetParameterAttributes
F N T T X [0 @] o] 1= o1 SRR

December 2007 © The Broadband Forum. All rights reserved. 4

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

A.3.2.7 DelEtEODJECL e e e
A.3.2.8 Download
A.3.29 Reboot...............

A.3.3 ACS Methods....................
A.3.3.1 Inform....cccooeieeiiiies
A.3.3.2 TransferCompletecccccvveenne
A.3.3.3 AutonomousTransferComplete

YN @] o] 1o g F= N 24 o O Y [T - Vo [PPSR
Y St R O = /11 1 o o SRR SPURRRN
A.4.1.1 GetQueuedTransfers
A4.1.2 SChedUIBINFOIMeuiii ettt e e as

A4 1.3 SEEVOUCKEIS ...ttt e e ettt e e e e e e s e e e e e e e e nnnes
A.4.1.4 GetOptions
YN o I U o] [0 - To PP P P TOPPUPPPPPTNE

AL LB FACIONYRESEL. ...
A.4.1.7 GetAllQueuedTransfers

A.42 ACS Methods.......cccovveeeiiiiiiiiiiee e
A.4.2.1 Kicked
A.4.2.2 ReqUESIDOWNIOAU.ciiiiiiiiii e ettt e et e e e e e e et e e e e e e e sarbaaeeaeeeeannees

F N SR = T | o F= 1 o [o O PPRR R
A.5.1 CPE Fault Codes..............
A.5.2 ACS Fault Codes..............

A.6 RPC Method XML Schema

ANNEX B, REMOVE ...ttt ettt et s b e nb e san e e st b e e sereeeneen 101
ANNEX C. SIgNed VOUCKEISt e ettt e e e e e ettt e e e e e e e annneeeas 102
€1 OVEBIVIBW ..ttt ettt E e ettt e e et e b e e bt e et e e e et et e e et et e e e 102
C.2 Control of OptioNS USING VOUCKNEISueiiiiiieiiiitiiee ettt e e ettt e e e e e e ntba e e e e e e e e eannaeeaaeas 102
C.3 VOUCKNET DEFINILIONeiiiiiiiiitit ittt e et et e e e e e et e et e e e e e e snbbee e e e e e annnbneeeeeeas 102
Annex D. Web ldentity ManagemeENntoooo it 107
D 200 R @ V= V= SO UPRTRO 107
D.2 Use of the Kicked RPC MELNOMoooiiiiiiiiiii ettt e e 107
D.3 Web Identity ManagemeNnt PrOCEUUIESciiuuiieiiiiieeiiiie ettt ettt e e e e e 107
D I N IR (o [0] (T = T = PRSP 108
Annex E. Signed Package FOMMALttt e e e e e e et e e e e e e e e nneeeeeeas 110
R [1 o Yo [1 o 1 o} o PR 110
E.2 Signed Package FOrMAat STIUCTUIEcoiiuiiiiiiee ettt e e e e e et e e e e e e e e nne e e e aaaeeaneeeas 110

E.2.1 ENCOAING CONVENTIONS ...ooiiiiiiiiiiiiee ettt ettt ettt e e e e e st e e e e e e e e aasbb e e e e e e e e s annnneeeeas 111
R I o (= Vo =] gl o] o - L TSP PP PPPTPTPOP
E.4 CommaNd LISt FOMMAL.........coiiiiiiiiiiieiiie sttt e et e s nr e re e

E.4.1 Command Types

| S 1 o To @] 41 ' = Vg o TS ERPR RPN

E.4.3 Extract and Add COMMEANGS.cccuriiiiiiieiiiiie ettt e et s et e e e s bre e e e 113

E.4.4 Remove Commands

E.4.5 MOVE COMMANGSvviiiiiiiiiieiitie ittt e e e b et e e b e sre e e nne e nrneas

E.4.6 Version and Description COMMEANTSccoiiiiiiiiriiiieee et e e e et e e e e e e snineneeeeas

E.4.7 Timeout Commands

E.4.8 Reboot Command............

E.4.9 Format File System
E.4.10 Minimum and Maximum Version Commands
E.4.11 Role Command ...,
E.4.12 Minimum Storage Commands

December 2007 © The Broadband Forum. All rights reserved. 5

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

E.4.13 Required Attributes Command

E.5 Signatures

Annex F. Device-Gateway ASSOCIALIONiiiiiiiiiiiiiiei ettt e e e et a e e e e aneeee 121
N [11 o Yo [1 o 1 o o IO SPRRO 121
I A =141 410 To] (oo YT PP OUTP PP PPPT PP 121
A e (o o= o (U RSO SPRRRO 121
F.2.1 GateWay REQUITEMENTScciiiiiiiiiie e e ettt e e sttt e e e e e s e e e e e e e st e reeeeeessatbtbeeeaeeesananeraeees 122
F.2.2 Device Requirements
F.2.3 ACS REQUITEIMIENTS.....eiiiiiiiiiiiii ettt e e ettt e e e e e e et e e e e e e e e bbb et e e e e e e e aabbeeeeeeeeeaansnereeeas
F.2.4 Device-Gateway ASSOCIAtION FIOWSoooiiiiiiiiiiiiei et e e e e eaeeeee s 124
F.2.5 DHCP VENAOr OPLIONS ..oiiiiiiiiiiiiiieee e ettt ee e e e e ettt e e e e e e s aseaeeeaaaaaaaantbeseeeaaasaanneeeeeaaesaaannereeeas 125
F.3 Security CONSIAEIALIONSeiiiiiiieeiitie ettt e e e sk e e s st e e e nabe e e e st e e e anne e e s nnes 126
Annex G. Connection Request Via NAT GaEWAYcueeeiiiiiieriieeeiiiiie ettt 127
LR 11 (oo [0 o3 1o o HO T TP OO P TP P PSP PR PP PPN
LT o (o Tt <o [(=SSP PUER
G.2.1 CPE REQUIFEIMENIS. ...ttt ettt e e ettt e e e e e e bbbt e et e e e e e bbbt e et e e e e e e annbbeeeeaeeeennnnes
G.2.1.1 Binding Discovery
G.2.1.2 Maintaining the Binding
G.2.1.3 Communication of the Binding Information to the ACSc.cccveiriee e 130
G.2.1.4 UDP Connection Requests
G.2.2 ACS REQUITEIMENES. ... iiiitiiiie e e ee ittt e e e e e ettt e e e e e s st e e e e e e e s aatbtr e et aeessasatbaetaeeeeasntbaeaeaeeeesnnes
G.2.2.1 STUN Server REQUIFEIMENESuuiiiieeiiiiiiiiiieeeseeiiiteet e e e e s sistreeeeaessssnsraeeeaesessnsneeeeaens

G.2.2.2 Determination of the Binding Information
G.2.2.3 UDP Connection Requests
G.2.3 Message Flows

G.3 Security Considerations

December 2007 © The Broadband Forum. All rights reserved. 6

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Summary:
A protocol for communication between a CPE and Auto-Configuration Server (ACS) that

encompasses secure auto-configuration as well as other CPE management functions
within a common framework.

December 2007 © The Broadband Forum. All rights reserved. 7

11

111

112

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Introduction

Note — sections 1 and 2 of this document are introductory and do not define requirements of this
protocol.

This document describes the CPE WAN Management Protocol, intended for communication between a
CPE and Auto-Configuration Server (ACS). The CPE WAN Management Protocol defines a mechanism
that encompasses secure auto-configuration of a CPE, and also incorporates other CPE management
functions into a common framework.

This document specifies the generic requirements of the management protocol methods which can be
applied to any TR-069 CPE. Other documents specify the managed objects, or data models, for specific
types of devices or services.

Functional Components

The CPE WAN Management Protocol is intended to support a variety of functionalities to manage a
collection of CPE, including the following primary capabilities:

e Auto-configuration and dynamic service provisioning
e Software/firmware image management
e Status and performance monitoring

e Diagnostics

Auto-Configuration and Dynamic Service Provisioning

The CPE WAN Management Protocol allows an ACS to provision a CPE or collection of CPE based on a
variety of criteria.

The provisioning mechanism allows CPE provisioning at the time of initial connection to the broadband
access network, and the ability to re-provision or re-configure at any subsequent time. This includes
support for asynchronous ACS-initiated re-provisioning of a CPE.

The identification mechanisms included in the protocol allow CPE provisioning based either on the
requirements of each specific CPE, or on collective criteria such as the CPE vendor, model, software
version, or other criteria.

The protocol also provides optional tools to manage the CPE-specific components of optional applications
or services for which an additional level of security is required to control, such as those involving
payments. The mechanism for control of such Options using digitally signed VVouchers is defined in Annex
C.

The provisioning mechanism allows straightforward future extension to allow provisioning of services and
capabilities not yet included in this version of the specifications.

Software/Firmware Image Management

The CPE WAN Management Protocol provides tools to manage downloading of CPE software/firmware
image files. The protocol provides mechanisms for version identification, file download initiation (ACS
initiated downloads and optional CPE initiated downloads), and notification of the ACS of the success or
failure of a file download.

The CPE WAN Management Protocol also defines a digitally signed file format that may optionally be
used to download either individual files or a package of files along with explicit installation instructions for
the CPE to perform. This signed package format ensures the integrity of downloaded files and the
associated installation instructions, allowing authentication of a file source that may be a party other than
the ACS operator.

December 2007 © The Broadband Forum. All rights reserved. 8

113

114

1.15

1.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Status and Performance Monitoring

The CPE WAN Management Protocol provides support for a CPE to make available information that the
ACS may use to monitor the CPE’s status and performance statistics. It also defines a set of mechanisms
that allow the CPE to actively notify the ACS of changes to its state.

Diagnostics

The CPE WAN Management Protocol provides support for a CPE to make available information that the
ACS may use to diagnose and resolve connectivity or service issues as well as the ability to execute defined
diagnostic tests.

Identity Management for Web Applications

To support web-based applications for access from a browser within the CPE’s local network, the CPE
WAN Management Protocol defines an optional mechanism that allows such web sites to customize their
content with explicit knowledge of the associated CPE. This mechanism is described in Annex D.

Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in or at the subscriber premises. The
CPE WAN Management Protocol may be used to manage both DSL B-NTs and other types of CPE,
including stand-alone routers and LAN-side client devices. It is agnostic to to the specific access medium
utilized by the service provider, although it does depend on IP-layer connectivity having been established
by the device.

Note — in the case of a B-NT, TR-046 [2] describes the overall framework for B-NT auto-
configuration, and TR-062 [3] and TR-044 [4] define the ATM layer and IP layer auto-
configuration procedures. Other types of broadband CPE should make use of the protocols
appropriate to their network architectures in order to obtain IP connectivity.

Note — where the CPE WAN Management Protocol is used to manage both a B-NT (or other
Internet Gateway Device), and a LAN-side client device operating behind that B-NT (or other
Internet Gateway Device), Annex F defines a mechanism to allow the ACS to associate the two so
that they may be managed together.

Figure 1 — Positioning in the End-to-End Architecture

OSS/BSS

Managed LAN

Policy, Device

Scope of CPE WAN Management
Protocol (CWMP):
ACS Southbound Interface

Managed LAN
Device

Call
Center
Managed Interne

Auto-Configuration Gateway Device

Server (ACS)

ACS Northbound Interface

December 2007 © The Broadband Forum. All rights reserved. 9

1.3

1.4

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Security Goals

The CPE WAN Management Protocol is designed to provide a high degree of security. The security model
is also designed to be scalable. It is intended to allow basic security to accommodate less robust CPE
implementations, while allowing greater security for those that can support more advanced security
mechanisms. In general terms, the security goals of the CPE WAN Management Protocol are as follows:

e Prevent tampering with the management functions of a CPE or ACS, or the transactions that take place
between a CPE and ACS.

e Provide confidentiality for the transactions that take place between a CPE and ACS.
e Allow appropriate authentication for each type of transaction.

e Prevent theft of service.

Architectural Goals

The protocol is intended to provide flexibility in the connectivity model. The protocol is intended to
provide the following:

e Allow both CPE and ACS initiated connection establishment, avoiding the need for a persistent
connection to be maintained between each CPE and an ACS.

e The functional interactions between the ACS and CPE should be independent of which end initiated
the establishment of the connection. In particular, even where ACS initiated connectivity is not
supported, all ACS initiated transactions should be able to take place over a connection initiated by the
CPE.

e Allow one or more ACSs to serve a population of CPE, which may be associated with one or more
service providers.

The protocol is intended to support discovery and association of ACS and CPE:
e Provide mechanisms for a CPE to discover the appropriate ACS for a given service provider.

e Provide mechanisms to allow an ACS to securely identify a CPE and associate it with a user/customer.
Processes to support such association should support models that incorporate user interaction as well as
those that are fully automatic.

The protocol is intended to allow an ACS access to control and monitor various parameters associated with
a CPE. The mechanisms provided to access these parameters are designed with the following premises:

e Different CPE may have differing capability levels, implementing different subsets of optional
functionality. Additionally, an ACS may manage a range of different device types delivering a range
of different services. As a result, an ACS must be able to discover the capabilities of a particular CPE.

e An ACS must be able to control and monitor the current configuration of a CPE.

e Other control entities besides an ACS may be able to control some parameters of a CPE’s
configuration (e.g., via LAN-side auto-configuration). As a result, the protocol must allow an ACS to
account for external changes to a CPE’s configuration. The ACS should also be able to control which
configuration parameters can be controlled via means other than by the ACS.

e The protocol should allow vendor-specific parameters to be defined and accessed.

The protocol is intended to minimize implementation complexity, while providing flexibility in trading off
complexity vs. functionality. The protocol incorporates a number of optional components that come into
play only if specific functionality is required. The protocol also incorporates existing standards where
appropriate, allowing leverage of off-the-shelf implementations.

The protocol is intended to be agnostic to the underlying access network.

December 2007 © The Broadband Forum. All rights reserved. 10

15

1.6

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

The protocol is also designed to be extensible. It includes mechanisms to support future extensions to the
standard, as well as explicit mechanisms for vendor-specific extensions.

Assumptions
Some assumptions made in defining the CPE WAN Management Protocol are listed below:

e All CPE regardless of type (bridge’, router, or other) obtain an IP address in order to communicate

with an ACS.

e A CPE can interact with a single ACS at a time. Atany time, a CPE is aware of exactly one ACS with
which it can connect. (Note: a collection of ACSs behind a load balancer is considered a single ACS
for the purposes of this document.)

Terminology

The following terminology is used throughout the series of documents defining the CPE WAN
Management Protocol.

ACS

Applied

B-NT

Committed

CPE

CWMP
Data Model

Device

Event

Internet
Gateway
Device

Option

Parameter

RPC

Auto-Configuration Server. This is a component in the broadband network responsible
for auto-configuration of the CPE for advanced services.

A change to the CPE’s configuration has been applied when the CPE has stopped using
the previous configuration and begun using the new configuration.

Broadband-Network Termination. A specific type of Broadband CPE used in DSL
networks.

A change to the CPE’s configuration has been committed when the change has been fully
validated, the new configuration appears in the configuration data model for subsequent
ACS operations to act on, and the change will definitely be applied in the future, as
required by the protocol specification.

Customer Premises Equipment; refers to any TR-069-compliant device and therefore
covers both Internet Gateway Devices and LAN-side end devices.

CPE WAN Management Protocol (the subject of this standard).

A hierarchical set of Parameters that define the managed objects accessible via TR-069
for a particular device or service.

Used interchangeably with CPE.

An indication that something of interest has happened that requires the CPE to notify the
ACS.

A CPE device, typically a broadband router, that acts as a gateway between the WAN
and the LAN.

An optional CPE capability that may only be enabled or disabled using a digitally signed
Voucher.

A name-value pair representing a manageable CPE parameter made accessible to an ACS
for reading and/or writing.

Remote Procedure Call.

In the case of a bridge, the CPE must establish IP-layer connectivity specifically for management

communication. The mechanism used to establish this connectivity would depend on the specific
network architecture. For example, a DSL bridge may connect using IPoE with DHCP for address
allocation, or may connect using PPPOE.

December 2007

© The Broadband Forum. All rights reserved. 11

1.7

2.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Session A contiguous sequence of CWMP transactions between a CPE and an ACS. Note that a
Session may span multiple TCP connections.

STB Set Top Box. This device contains Audio and Video decoders and is intended to be
connected to Analog TV and / or Home Theaters.

Transaction A message exchange between a CPE and ACS consisting of a single request followed by
a single response, initiated either by the CPE or ACS.

Transaction The same as a Session. The “Transaction” qualifier is sometimes used for emphasis.
Session

VolP A Voice over IP device that acts as the initiation/termination point for VolP calls.
Endpoint Examples of Endpoints include VVoIP phones and analog terminal adapters (ATAS).
Voucher A digitally signed data structure that instructs a particular CPE to enable or disable

Options, and characteristics that determine under what conditions the Options persist.

Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted
as described in [1].

The key word “DEPRECATED?” refers to a protocol feature, e.g. an RPC Method or Event Type, that is
defined and valid in the current version of the standard but is not strictly necessary, e.g. because another
more powerful feature has been defined. Such features SHOULD NOT be used; they might be removed
from the next major version of the protocol.

Architecture

Protocol Components

The CPE WAN Management Protocol comprises several components that are unique to this protocol, and
makes use of several standard protocols. The protocol stack defined by the CPE WAN Management

Protocol is shown in Figure 2. A brief description of each layer is provided in Table 1. Note that the CPE
and ACS must adhere to the requirements of the underlying standard protocols unless otherwise specified.

Figure 2 — Protocol stack

CPE/ACS Management Application

RPC Methods

SOAP

HTTP

SSL/TLS

TCP/IP

December 2007 © The Broadband Forum. All rights reserved. 12

2.2

2.3

23.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 1 — Protocol layer summary

Layer Description

CPE/ACS Application The application uses the CPE WAN Management Protocol on the CPE and ACS,
respectively. The application is locally defined and not specified as part of the CPE
WAN Management Protocol.

RPC Methods The specific RPC methods that are defined by the CPE WAN Management Protocol.
These methods are specified in Annex A.

SOAP A standard XML-based syntax used here to encode remote procedure calls. Specifically
SOAP 1.1, as specified in [8].

HTTP HTTP 1.1, as specified in [5].

SSL/TLS The standard Internet transport layer security protocols. Specifically, either SSL 3.0

(Secure Socket Layer), as defined in [10], or TLS 1.0 (Transport Layer Security) as
defined in [11].

TCP/IP Standard TCP/IP.

Security Mechanisms

The CPE WAN Management Protocol is designed to allow a high degree of security in the interactions that
use it. The CPE WAN Management Protocol is designed to prevent tampering with the transactions that
take place between a CPE and ACS, provide confidentiality for these transactions, and allow various levels
of authentication.

The following security mechanisms are incorporated in this protocol:

e The protocol supports the use of SSL/TLS for communications transport between CPE and ACS. This
provides transaction confidentiality, data integrity, and allows certificate-based authentication between
the CPE and ACS.

e The HTTP layer provides an alternative means of CPE and ACS authentication based on shared
secrets. Note that the protocol does not specify how the shared secrets are learned by the CPE and
ACS.

The protocol includes additional security mechanisms associated with the optional signed VVoucher
mechanism and the Signed Package Format, described in Annex C and Annex E, respectively.

Architectural Components

Parameters

The RPC Method Specification (see Annex A) defines a generic mechanism by which an ACS can read or
write Parameters to configure a CPE and monitor CPE status and statistics. Parameters for various classes
of CPE are defined in separate documents. At the time of writing the following standards define TR-069
data models.

e TR-106: Data Model Template for TR-069-Enabled Devices, [13]
e TR-098: Internet Gateway Device Data Model for TR-069, [24]
e TR-104: Provisioning Parameters for VolP CPE, [25]

Each Parameter consists of a name-value pair. The name identifies the particular Parameter, and has a
hierarchical structure similar to files in a directory, with each level separated by a “.” (dot). The value of a
Parameter may be one of several defined data types (see [13]).

Parameters may be defined as read-only or read-write. Read-only Parameters may be used to allow an ACS
to determine specific CPE characteristics, observe the current state of the CPE, or collect statistics.
Writeable Parameters allow an ACS to customize various aspects of the CPE’s operation. All writeable
Parameters must also be readable although those that contain confidential user information, e.g. passwords,
may return empty values when read (this is specified in the corresponding data model). The value of some

December 2007 © The Broadband Forum. All rights reserved. 13

2.3.2

2.3.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

writeable Parameters may be independently modifiable through means other than the interface defined in
this specification (e.g., some Parameters may also be modified via a LAN side auto-configuration protocol).

Because other protocols (as well as subscriber action) may independently modify the device configuration,
the ACS cannot assume that it is the only entity modifying device configuration. Additionally, it is
possible that a LAN-side mechanism could alter device configuration in such a way that it contravenes the
intended ACS-supplied configuration. Care should be taken in the implementation of both WAN and
LAN-side auto-configuration mechanisms, as well as subscriber-facing interfaces, to limit the instances of
such an occurrence.

The protocol supports a discovery mechanism that allows an ACS to determine what Parameters a
particular CPE supports, allowing the definition of optional parameters as well as supporting
straightforward addition of future standard Parameters.

The protocol also includes an extensibility mechanism that allows use of vendor-specific Parameters in
addition to those defined in this specification.

File Transfers

The RPC Method Specification (see Annex A) defines a mechanism to facilitate file downloads or
(optionally) uploads for a variety of purposes, such as firmware upgrades or vendor-specific configuration
files.

File transfers can be performed by means of Unicast or (for downloads) Multicast transport protocols.
Unicast protocols include HTTP/HTTPS, FTP, SFTP and TFTP. Multicast protocols include FLUTE and
DSM-CC. Support for HTTP/HTTPS is mandatory, and protocols other than those listed here can be
supported.

When initiated by the ACS, the CPE is provided with the location of the file to be transferred, or details of
the Multicast group to join. The CPE then performs the transfer, and notifies the ACS of the success or
failure.

Downloads may be optionally initiated by a CPE. In this case, the CPE first requests a download of a
particular file type from the ACS. The ACS may then respond by initiating the download following the
same steps as an ACS-initiated download.

Downloads may also be optionally initiated by an external event, e.g. a Multicast firmware availability
announcement. In this case, the CPE performs the transfer autonomously, and notifies the ACS of the
success or failure.

The CPE WAN Management Protocol also defines a digitally signed file format that may optionally be
used for downloads. This Signed Package Format is defined in Annex E.

CPE Initiated Sessions

The RPC Method Specification (see Annex A) defines a mechanism that allows a CPE to inform a
corresponding ACS of various conditions, and to ensure that CPE-to-ACS communication will occur with
some minimum frequency.

This includes mechanisms to establish communication upon initial CPE installation in order to ‘bootstrap’
initial customized Parameters into the CPE. It also includes a mechanism to establish periodic
communication with the ACS on an ongoing basis, or when events occur that must be reported to the ACS
(such as when the broadband IP address of the CPE changes).

In each case, when communication is established the CPE identifies itself uniquely via manufacturer and
serial number information (and optional product identifier) so that the ACS knows which CPE it is
communicating with and can respond in an appropriate way.

December 2007 © The Broadband Forum. All rights reserved. 14

2.3.4

3.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Asynchronous ACS Initiated Sessions

An important aspect of service auto-configuration is the ability for the ACS to inform the CPE of a
configuration change asynchronously. This allows the auto-configuration mechanism to be used for
services that require near-real-time reconfiguration of the CPE. For example, this may be used to provide
an end-user with immediate access to a service or feature they have subscribed to, without waiting for the
next periodic contact.

The CPE WAN Management Protocol incorporates a mechanism for the ACS to issue a Connection
Request to the CPE at any time, instructing it to establish a communication session with the ACS.

While the CPE WAN Management Protocol also allows polling by the CPE in lieu of ACS-initiated
connections, the CPE WAN Management Protocol does not rely on polling or establishment of persistent
connections from the CPE to provide asynchronous notification.

The basic mechanism defined in the CPE WAN Management Protocol to enable asynchronous ACS
initiated communication assumes direct IP addressability of the CPE from the ACS. An alternative
mechanism is defined in Annex G, which accommodates CPE operating behind a NAT gateway that are not
directly addressable by the ACS.

Procedures and Requirements

This section, along with the annexes referenced in this section, defines the normative requirements of the
CPE WAN Management Protocol.

This section also references a number of standards and other specifications that form part of the CPE WAN
Management Protocol. Unless otherwise specified, the CPE and ACS MUST adhere to the requirements of
these referenced specifications.

ACS Discovery

The CPE WAN Management Protocol defines the following mechanisms that MAY be used by a CPE to
discover the address of its associated ACS:

1. The CPE MAY be configured locally with the URL of the ACS. For example, this MAY be done via a
LAN-side CPE auto-configuration protocol. The CPE would use DNS to resolve the IP address of the
ACS from the host name component of the URL.

2. As part of the IP layer auto-configuration, a DHCP server on the access network MAY be configured
to include the ACS URL as a DHCP option [14]. The CPE would use DNS to resolve the IP address of
the ACS from the host name component of the URL. In this case a second DHCP option MAY be
used to set the ProvisioningCode, which MAY be used to indicate the primary service provider and
other provisioning information to the ACS.

A CPE identifies itself to the DHCP server as supporting this method by including the string
“dslforum.org” (all lower case) anywhere in the Vendor Class Identifier (DHCP option 60).

The CPE MAY use the values received from the DHCP server in the Vendor Specific Information
(DHCP option 43) to set the corresponding parameters as listed in Table 2. This DHCP option is
encoded as a list of one or more Encapsulated Vendor-Specific Options in the format defined in [14].
This list MAY include other vendor-specific options in addition to those listed here.

If the CPE obtained an ACS URL through DHCP and it cannot reach the ACS, the CPE MUST
perform a DHCP Inform to re-discover the ACS URL. The CPE MUST consider the ACS unreachable
if it cannot establish a TCP connection to it for 300 seconds at each of the IP addresses to which the
ACS URL resolves. If the CPE does not receive a reply for the DHCP Inform, it MUST attempt to
retry according to RFC 2131.

When the CPE needs to contact the ACS, it MUST use the DHCP discovery mechanism in the
following scenarios:

e |f the CPE has an empty value for the ManagementServer.URL parameter, or

December 2007 © The Broadband Forum. All rights reserved. 15

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

e |f the CPE is unable to contact the ACS and the CPE originally (the first successful time after the
most recent factory default) obtained its ACS URL through DHCP.

This behavior enables the CPE to go back to the use of DHCP for finding the ACS if an ACS URL had
not been pre-configured in the CPE. For example, this can handle the situation of setting an incorrect
ACS URL on the CPE. This behavior is not meant as an ACS failover mechanism.

The CPE MUST remember the mechanism it used to locate the ACS the first time it successfully
contacted it. If the CPE did not use DHCP to discover the ACS URL, then it SHOULD NOT fall back
to using DHCP for ACS discovery. If the CPE originally used DHCP for ACS discovery, then when it
fails to contact the ACS, it MUST perform re-discovery via DHCP. The last requirement holds even if
the ACS URL has been subsequently set through a non-DHCP mechanism.

Table 2 — Encapsulated Vendor Specific Options

Encapsulated Encapsulated Vendor- | Parameter?

Option Specific Option number

URL of the ACS 1 ...ManagementServer.URL
Provisioning code 2 ...Devicelnfo.ProvisioningCode

The specified URL MUST be an absolute URL. Both the URL and ProvisioningCode MUST NOT be
null terminated. If the CPE receives a URL or ProvisioningCode value that is null terminated, the CPE
MUST accept the value provided, and MUST NOT interpret the null character as part of the URL or
ProvisioningCode value.

3. The CPE MAY have a default ACS URL that it MAY use if no other URL is provided to it.

The ACS URL MUST be in the form of a valid HTTP or HTTPS URL [5]. Use of an HTTPS URL
indicates that the CPE MUST establish an SSL or TLS connection to the ACS.

Once the CPE has established a connection to the ACS, the ACS MAY at any time modify the ACS address
Parameter stored within the CPE (...ManagementServer.URL, as defined in [13]). Once modified, the CPE
MUST use the modified address for all subsequent connections to the ACS.

The “host” portion of the ACS URL is used by the CPE for validating the certificate from the ACS when
using certificate-based authentication. Because this relies on the accuracy of the ACS URL, the overall
security of this protocol is dependent on the security of the ACS URL.

The CPE SHOULD restrict the ability to locally configure the ACS URL to mechanisms that require strict
security. The CPE MAY further restrict the ability to locally set the ACS URL to initial setup only,
preventing further local configuration once the initial connection to an ACS has successfully been
established such that only its existing ACS is permitted subsequently to change this URL.

The use of DHCP for configuration of the ACS URL SHOULD be limited to situations in which the
security of the link between the DHCP server and the CPE can be assured by the service provider. Since
DHCP does not itself incorporate a security mechanism, other means of ensuring this security SHOULD be
provided.

The ACS URL MAY contain a DNS hostname or an IP address. When resolving the ACS hostname, the
DNS server might return multiple IP addresses. In this case, the CPE SHOULD randomly choose an IP
address from the list. When the CPE is unable to reach the ACS, it SHOULD randomly select a different
IP address from the list and attempt to contact the ACS at the new IP address. This behavior ensures that
CPEs will balance their requests between different ACSs if multiple IP addresses represent different ACSs.

The CPE MUST NOT cache the DNS server response beyond the duration of time to live (TTL) returned
by DNS server unless it cannot contact the DNS server for an update. This behavior is required by DNS
RFC 1034 and provides an opportunity for the DNS server to update stale data.

2 As defined in [13].

December 2007 © The Broadband Forum. All rights reserved. 16

3.2

3.2.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

It is further RECOMMENDED that the CPE implements affinity to a particular ACS IP address. Affinity

to a given IP address means that the CPE will attempt to use the same IP address for as along as it can
contact the ACS at this address. This creates a more stable system and can allow the ACS to perform
better due to better caching. To implement the affinity the CPE SHOULD store to persistent storage the

last successfully used IP address and the list of IP addresses from which it was selected. The CPE

SHOULD continue to perform DNS queries as normal, but SHOULD continue using the same IP address
for as long as it can contact the ACS and for as long as the list of IP addresses returned by the DNS does

not change. The CPE SHOULD select a new IP address whenever the list of IP addresses changes or when
it cannot contact the ACS. This provides an opportunity for service providers to reconfigure their network.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see [17]), and the ACS

MAY use this port in its URL.

Connection Establishment

CPE Connection Initiation

The CPE MAY at any time initiate a connection to the ACS using the pre-determined ACS address (see

section 3.1). A CPE MUST establish a connection to the ACS and issue the Inform RPC method
(following the procedures described in section 3.7) under the following conditions:

e The first time the CPE establishes a connection to the access network on initial installation

e On power-up or reset

e Once every PeriodicInforminterval (for example, every 24-hours)

e When so instructed by the optional Schedulelnform method

e Whenever the CPE receives a valid Connection Request from an ACS (see section 3.2.2)
e Whenever the URL of the ACS changes

e Whenever a parameter is modified that is required to initiate an Inform on change.

e Whenever the value of a parameter that the ACS has marked for “active notification” via the
SetParameterAttributes method is modified by an external cause (a cause other than the ACS
itself). Parameter changes made by the ACS itself via SetParameterVValues MUST NOT cause a
new session to be initiated. If a parameter is modified more than once before the CPE is able to
initiate a session to perform the notification, the CPE MUST perform only one notification.

If a parameter is modified by an external cause while a session is in progress, the change causes a

new session to be established after the current session is terminated (it MUST NOT affect the

current session).

In order to avoid excessive traffic to the ACS, a CPE MAY place a locally specified limit on the
frequency of parameter change notifications. This limit SHOULD be defined so that it is
exceeded only in unusual circumstances. If this limit is exceeded, the CPE MAY delay by a
locally specified amount initiation of a session to notify the ACS. After this delay, the CPE

MUST initiate a session to the ACS and indicate all relevant parameter changes (those parameters

that have been marked for notification) that have occurred since the last such notification.

e Whenever a download or upload completes (either successfully or unsuccessfully), provided that

CPE policy indicates that the ACS needs to be notified of the download or upload completion.

The ACS MUST always be notified of the completion of downloads or uploads that were
specifically requested by the ACS.

CPE policy MUST determine whether to notify the ACS of the completion of downloads or

uploads that were not specifically requested by the ACS.

December 2007 © The Broadband Forum. All rights reserved.

17

3.2.11

3.2.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Note — this CPE policy is expected to be remotely configurable. For example, the CPE might be
configured to notify the ACS only if a download or upload (not specifically requested by the ACS)
was of management-related content.

e Whenever an unsuccessfully terminated session is retried according to the session retry policy
specified in section 3.2.1.1.

The CPE MUST NOT maintain an open connection to the ACS when no more outstanding messages exist
on the CPE or ACS. Refer to section 3.7.1.4 for details of CPE session termination criteria.

Session Retry Policy

A CPE MUST retry failed sessions to attempt to redeliver events that it has previously failed to deliver and
to allow the ACS to make additional requests in a timely fashion. Section 3.7.1.5 details the rules for
successful event delivery, for retrying event delivery, and for discarding events after failing to deliver them.
The CPE MUST keep track of the number of times it has attempted to retry a failed session.

If the CPE fails to establish a session, this might be because the CPE supports CPE WAN Management
Protocol v1.1 (or later) and the ACS supports only v1.0. If this situation is suspected (see section 3.7.2.1),
the CPE MUST revert to v1.0 when retrying the failed session.

A CPE MUST retry a failed session after waiting for an interval of time specified in Table 3 or when a new
event occurs, whichever comes first. The CPE MUST choose the wait interval by randomly selecting a
number of seconds from a range given by the post-reboot session retry count. When retrying a failed
session after an intervening reboot, the CPE MUST reset the wait intervals it chooses from as though it
were making its first session retry attempt. In other words, if a session is retried when a new event other
than BOOT occurs, it does not reset the wait interval, although the continued occurrence of new events
might cause sessions to be initiated more frequently than shown in the table. Regardless of the reason a
previous session failed or the condition prompting session retry, the CPE MUST communicate to the ACS
the session retry count.

Beginning with the tenth post-reboot session retry attempt, the CPE MUST choose from a range between
2560 and 5120 seconds. The CPE MUST continue to retry a failed session until it is successfully
terminated. Once a session terminates successfully, the CPE MUST reset the session retry count to zero and
no longer apply session retry policy to determine when to initiate the next session.

Table 3 — Session Retry Wait Intervals

Post reboot session Wait interval range (min-max seconds)
retry count

#1 5-10

#2 10-20

#3 20-40

#4 40-80

#5 80-160

#6 160-320
#7 320-640
#8 640-1280
#9 1280-2560
#10 and subsequent 2560-5120

ACS Connection Initiation

The ACS MAY at any time request that the CPE initiate a connection to the ACS using the Connection
Request mechanism. Support for this mechanism is REQUIRED in a CPE, and is RECOMMENDED in an
ACS.

December 2007 © The Broadband Forum. All rights reserved. 18

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

This mechanism relies on the CPE having an IP address that is routable from the ACS. If the CPE is
behind a firewall or NAT device lying between the ACS and CPE, the ACS might not be able to access the
CPE at all. Annex G defines a mechanism that allows an ACS to contact a CPE connected via a NAT
device.

The Connection Request mechanism is defined as follows:

The Connection Request MUST use an HTTP 1.1 GET to a specific URL designated by the CPE. The
URL value is available as read-only Parameter on the CPE. The path of this URL value SHOULD be
randomly generated by the CPE so that it is unique per CPE.

The Connection Request MUST make use of HTTP, not HTTPS. The associated URL MUST be an
HTTP URL.

No data is conveyed in the Connection Request HTTP GET. Any data that might be contained
SHOULD be ignored by the CPE.

The CPE MUST use digest-authentication to authenticate the ACS before proceeding—the CPE
MUST NOT initiate a connection to the ACS due to an unsuccessfully authenticated request.

The CPE MUST accept Connection Requests from any source that has the correct authentication
parameters for the target CPE.

The CPE’s response to a successfully authenticated Connection Request MUST use either a “200
(OK)” or a “204 (No Content)” HTTP status code. The CPE MUST send this response immediately
upon successful authentication, prior to it initiating the resulting session. The length of the message-
body in the HTTP response MUST be zero.

The CPE SHOULD restrict the number of Connection Requests it accepts during a given period of
time in order to further reduce the possibility of a denial of service attack. If the CPE chooses to reject
a Connection Request for this reason, the CPE MUST respond to that Connection Request with an
HTTP 503 status code (Service Unavailable). In this case, the CPE SHOULD NOT include the HTTP
Retry-After header in the response.

If the CPE successfully authenticates and responds to a Connection Request as described above, and if
it is not already in a session, then it MUST, within 30 seconds of sending the response, attempt to
establish a session with the pre-determined ACS address (see section 3.1) in which it includes the

“6 CONNECTION REQUEST” EventCode in the Inform.

Note — in practice there might be exceptional circumstances that would cause a CPE to fail to
meet this requirement on rare occasions.

If the ACS receives a successful response to a Connection Request but after at least 30 seconds the
CPE has not successfully established a session that includes the “6 CONNECTION REQUEST”
EventCode in the Inform, the ACS MAY retry the Connection Request to that CPE.

If, once the CPE successfully authenticates and responds to a Connection Request, but before it
establishes a session to the ACS, it receives one or more successfully authenticated Connection
Requests, the CPE MUST return a successful response for each of those Connection Requests, but
MUST NOT initiate any additional sessions as a result of these additional Connection Requests,
regardless of how many it receives during this time.

If the CPE is already in a session with the ACS when it receives one or more Connection Requests, it
MUST NOT terminate that session prematurely as a result. The CPE MUST instead take one of the
following alternative actions:

e Reject each Connection Request by responding with an HTTP 503 status code (Service
Unavailable). In this case, the CPE SHOULD NOT include the HTTP Retry-After header in the
response.

e Following the completion of the session, initiate exactly one new session (regardless of how many
Connection Requests had been received during the previous session) in which it includes the

December 2007 © The Broadband Forum. All rights reserved. 19

3.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

“6 CONNECTION REQUEST” EventCode in the Inform. In this case, the CPE MUST initiate
the session immediately after the existing session is complete and all changes from that session
have been applied.

This requirement holds for Connection Requests received any time during the interval that the CPE
considers itself in a session, including the period in which the CPE is in the process of establishing the
session.

e The CPE MUST NOT reject a properly authenticated Connection Request for any reason other than
those described above. If the CPE rejects a Connection Request for any of the reasons described
above, it MUST NOT initiate a session with the ACS as a result of that Connection Request.

This mechanism relies on the ACS having had at least one prior communication with the CPE via a CPE-
initiated interaction. During this interaction, if the ACS wishes to allow future ACS-initiated transactions,
it would use the value of the ...ManagementServer.ConnectionRequestURL Parameter (see [13]). If the
URL used for management access changes, the CPE MUST notify the ACS by issuing an Inform message
indicating the new management IP address (see [13]), thus keeping the ACS up-to-date.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see [17]), and the CPE
MAY use this port in the Connection Request URL.

Use of SSL/TLS and TCP

The use of SSL/TLS to transport the CPE WAN Management Protocol is RECOMMENDED, although the
protocol MAY be used directly over a TCP connection instead. If SSL/TLS is not used, some aspects of
security are sacrificed. Specifically, SSL/TLS provides confidentiality and data integrity, and allows
certificate-based authentication in lieu of shared secret-based authentication.

Certain restrictions on the use of SSL/TLS and TCP are defined as follows:
e The CPE MUST support SSL 3.0 [10], TLS 1.0 [11] or both.

e If CPE supports both, it SHOULD communicate both capabilities to the ACS as specified in Appendix
E of RFC 2246, allowing the ACS to choose the protocol.

e Ifthe ACS URL has been specified as an HTTPS URL, the CPE MUST establish connections to the
ACS using SSL / TLS.

e The CPE MUST support the following SSL / TLS cipher suites:

e RSA WITH_3DES_EDE_CBC_SHA

e RSA WITH_RC4 128 SHA
e A CPE MUST be able to initiate outgoing connections to the ACS.
e An ACS MUST be able to accept CPE-initiated connections.

e |fSSL/TLS is used, the CPE MUST authenticate the ACS using the ACS-provided certificate.
Authentication of the ACS requires that the CPE MUST validate the certificate against a root
certificate, and that the CPE MUST ensure that the value of the CN (Common Name) component of
the Subject field in the certificate exactly matches the host portion of the ACS URL known to the CPE
(even if the host portion of the ACS URL is an IP address). This MUST be a direct string comparison
between the CN and the host portion of the ACS URL. If either of these is in the form of a hostname
(rather than an IP address), this comparison MUST NOT involve the IP address that the hostname
resolves to.

To validate against a root certificate, the CPE MUST contain one or more trusted root certificates that
are either pre-loaded in the CPE or provided to the CPE by a secure means outside the scope of this
specification.

December 2007 © The Broadband Forum. All rights reserved. 20

3.4

34.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

If as a result of an HTTP redirect, the CPE is attempting to access an ACS at a URL different from its
pre-configured ACS URL, the CPE MUST validate the CN component of the ACS certificate against
the host portion of the redirected ACS URL rather than the pre-configured ACS URL.

A CPE SHOULD wait until it has accurate absolute time before contacting the ACS. If a CPE chooses
to contact the ACS before it has accurate absolute time (or if it does not support absolute time), it
MUST ignore those components of the ACS certificate that involve absolute time, e.g. not-valid-before
and not-valid-after certificate restrictions.

e Support for CPE authentication using client-side certificates is OPTIONAL for both the CPE and ACS.
Such client-side certificates MUST be signed by an appropriate chain. When client-side certificates
are used to authenticate the CPE to the ACS, the Common Name (CN) field in the CPE certificate
MUST be one of the following two types:

e Unique CPE client certificate. In this case, the value of the CN field MUST be globally unique for
each CPE. Specifically, the CN field MUST adhere to the format recommended for the
username/userid in section 3.4.4.

Examples:
00OD09E-0123456789
012345-STB-0123456789
012345-Set%2DTop%2DBox-0123456789

e Generic CPE client certificate. In this case, the value of the CN field MAY be the same among a
set of CPE, such as all CPE of a specific model from a given vendor. The content of the CN field
is not specified in this case.

If generic CPE client certificates are used, the ACS SHOULD additionally authenticate the CPE
using HTTP basic or digest authentication to establish the identity of a specific CPE.

Use of HTTP
SOAP messages are carried between a CPE and an ACS using HTTP 1.1 [5], where the CPE acts as the
HTTP client and the ACS acts as the HTTP server.

Note — the CPE WAN Management Protocol also uses HTTP for Connection Requests, where the
ACS acts as the HTTP client and the CPE acts as the HTTP server. This usage of HTTP is
described in section 3.2.2.

Encoding SOAP over HTTP

The encoding of SOAP over HTTP extends the HTTP binding for SOAP, as defined in section 6 of [8], as
follows:

e A SOAP request from an ACS to a CPE is sent over an HTTP response, while the CPE’s SOAP
response to an ACS request is sent over a subsequent HTTP POST.

e When there is a SOAP response in an HTTP Request, or when there is a SOAP Fault response in
an HTTP Request, the SOAPAction header in the HTTP Request MUST have no value (with no
quotes), indicating that this header provides no information as to the intent of the message. That
is, it MUST appear as follows:

SOAPAction:

e When an HTTP Request or Response contains a SOAP Envelope, the HTTP Content-Type header
MUST have a type/subtype of “text/xml”.

e Anempty HTTP POST MUST NOT contain a SOAPAction header.
e Anempty HTTP POST MUST NOT contain a Content-Type header.

December 2007 © The Broadband Forum. All rights reserved. 21

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

e An HTTP response that contains any CPE WAN Management Protocol payload (a SOAP request
to the CPE, a successful SOAP response to the CPE, or a SOAP fault response containing a Fault
element defined in section 3.5) MUST use the HTTP status code 200 (OK).

Below is an example HTTP Response from an ACS containing a SOAP Request:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: xyz

<soap:Envelope
xmlIns:soap=""http://schemas.xmlsoap.org/soap/envelope/*
xmIns:cwmp=""urn:dslforum-org:cwmp-1-0"">
<soap:Body>
<cwmp:Request>
<argument>value</argument>
</cwmp:Request>
</soap:Body>
</soap:Envelope>

Note — in the above example, the XML namespace prefixes used are only examples. The actual
namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note — in the above example, the CWMP namespace identifier “urn:dslforum-org:cwmp-1-0"" is
only an example and is not necessarily the version that is defined by this specification.

3.4.2 Transaction Sessions

For a sequence of transactions forming a single session, a CPE SHOULD maintain a TCP connection that
persists throughout the duration of the session. However, if the TCP connection is cleanly closed after an
HTTP request/response round trip, and if the session has not otherwise terminated (either successfully or
unsuccessfully) at the time of the last HTTP response, the CPE MUST continue the session by sending the
next HTTP request in a new TCP connection.

After receiving an authentication challenge, the CPE MUST send the next HTTP request (including the
"Authorization" HTTP header) in the same TCP connection unless the ACS specifically requested, via a
"Connection: close™ HTTP header, that the TCP connection be closed.® In the latter case, the CPE MUST
honor the ACS request, close the TCP connection, and send the next HTTP request (including the
"Authorization" HTTP header) in a new TCP connection.

If the CPE for any reason fails to establish a TCP connection, fails to send an HTTP message, or fails to
receive an HTTP response, the CPE MUST consider the session unsuccessfully terminated. The CPE
MUST wait a minimum of 30 seconds before declaring a failure to establish a TCP connection, or failure to
receive an HTTP response.

The ACS SHOULD make use of a session cookie to maintain session state as described in [7]. The ACS
MAY make use of old-style “Netscape” cookies as well as, or instead of, the new-style cookies of [7]. The
ACS SHOULD use only cookies marked for Discard, and SHOULD NOT assume that a CPE will maintain
a cookie beyond the duration of the session.

To ensure that an ACS can make use of a session cookie, a CPE MUST support the use of cookies as
defined in [7] including the return of the cookie value in each subsequent HTTP POST, with the exception
that a CPE need not support storage of cookies beyond the duration of a session. In particular, because the
ACS might send old-style, new-style, or a mixture of old-style and new-style cookies, the CPE MUST
support the compatibility requirements of section 9.1 of [7]. The CPE MUST support the use of multiple
cookies by the ACS, and MUST make available at least 512 bytes for storage of cookies.

% This extra requirement is necessary because some ACS implementations might utilize the underlying TCP
connection as a mechanism to detect replay attacks (see the note in section 3.4.5). Such implementations
would require the response to an authentication challenge to use the same TCP connection as the
challenge.

December 2007 © The Broadband Forum. All rights reserved. 22

3.4.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

When a transaction session is completed successfully or terminated unsuccessfully, a CPE MUST close the
associated TCP connection to the ACS and discard all cookies marked for Discard.

A CPE MUST support the use of HTTP redirection by the ACS. The CPE and ACS requirements
associated with the use of HTTP redirection are as follows:

e A CPE MUST support the 302 (Found) and 307 (Temporary Redirect) HTTP status codes.
e A CPE MAY also support the 301 (Moved Permanently) HTTP status code for redirection.

e The CPE MUST allow redirection to occur at any point during a session, and the ACS MAY issue a
redirect at any point during a session.

e |fthe CPE is redirected, it MUST attempt to continue the session using the URL provided in the HTTP
redirect response. Specifically, the CPE MUST re-send the HTTP POST that resulted in the redirect
response to the ACS at the redirected URL, and the CPE MUST then attempt to proceed with the
session exactly as if no redirection had occurred.

e |fthe CPE is redirected, the redirected URL MUST apply only to the remainder of the current session
or until a subsequent redirect occurs later in the same session. The redirected URL MUST NOT be
saved by the CPE (i.e. as the value of ...ManagementServer.URL, as defined in [13]) for use in any
subsequent session or any subsequent retries of the session. This requirement MUST hold even if the
301 (Moved Permanently) HTTP status code is used for redirection.

e The CPE MUST allow up to 5 consecutive redirections. If the CPE is redirected more than 5 times
consecutively, it MAY consider the session unsuccessfully terminated.

e The URL provided in HTTP redirection MAY be an HTTP or HTTPS URL. The appropriate transport
mechanism (TCP or SSL/TLS) MUST be used with the new target regardless of the transport used
before redirection.

e If SSL/TLS is used for the redirected session, requiring the CPE to authenticate the ACS, the
authentication MUST be based on the redirected URL rather than the pre-configured ACS URL (see
section 3.3).

e Inan HTTP response sent by the ACS containing a redirect status code, the length of the HTTP
message-body MUST be zero. If the CPE receives an HTTP re-direct response with a non-empty
message-body, it MUST ignore the content of the message-body.

e When redirected, the CPE MUST include all cookies associated with the session in subsequent HTTP
requests to the redirected ACS. The CPE MUST consider a redirect from an ACS to be a “verifiable
transaction” as defined in [7], and thus it MUST send cookies to the redirected ACS without
performing domain validation of each cookie.

File Transfers

If the CPE is instructed to perform a file transfer via the Download or Upload request from the ACS, and if
the file location is specified as an HTTP URL with the same host name as the ACS, then the CPE MUST
choose one of the following approaches in performing the transfer:

e The CPE MAY send the HTTP GET/PUT over the already established connection. Once the file
has been transferred, the CPE MAY then proceed in sending additional messages to the ACS
while continuing to maintain the connection.

e The CPE MAY open a second connection over which to transfer the file, while maintaining the
session to the ACS over which it can continue to send messages.

e The CPE MAY terminate the session to the ACS and then perform the transfer.

If the file location is not an HTTP URL or is not in the same domain as the ACS or requires use of a
different port, then only the latter two options are available to it.

December 2007 © The Broadband Forum. All rights reserved. 23

3.4.4

3.4.5

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

A CPE MUST support the use of SSL / TLS as specified in section 3.3 for establishment of a separate TCP
connection to transfer a file using HTTP. The CPE MUST use SSL / TLS when the file location is
specified as an HTTPS URL.

The CPE MUST support both HTTP basic and digest authentication file transfers. The specific
authentication method is chosen by the file server by virtue of providing a basic or digest authentication
challenge. If authentication is used by the file server, the ACS MUST specify credentials using the
specific RPC method used to initiate the transfer (i.e., Download, Upload).

Authentication

If the CPE is not authenticated using SSL/TLS, the ACS MUST authenticate the CPE using HTTP. If
SSL/TLS is being used for encryption, the ACS MAY use either basic or digest authentication [6]. If
SSL/TLS is not being used, then the ACS MUST use digest authentication.

The CPE MUST support both HTTP basic and digest authentication. The ACS chooses the authentication
scheme by virtue of providing basic or digest authentication challenge.

If the CPE has received an authentication challenge from the ACS (either basic or digest), the CPE
SHOULD send an Authorization header in all subsequent HTTP requests for the duration of the TCP
connection. Whether or not the CPE does this, the ACS MAY issue subsequent authentication challenges
at any stage of the session within a single or multiple TCP connections.

If any form of HTTP authentication is used to authenticate the CPE, the CPE SHOULD use a
username/userid that is globally unique among all CPE manufacturers. Specifically, the CPE
username/userid SHOULD be in one of the following two formats:

<OUI> "-" <ProductClass> "-" <SerialNumber>
<OUI> "-" <SerialNumber>

If a username/userid of the above format is used, the <OUI>, <ProductClass>, and <SerialNumber> fields
MUST match exactly the corresponding parameters included in the DeviceldStruct in the Inform message,
as defined in Annex A, except that, in order to guarantee that the parameter values can be extracted from
the username/userid, any character i,n the <ProductClass> and <SerialNumber> that is not either
alphanumeric or an underscore (“_") MUST be escaped using URI percent encoding, as defined in RFC
3986 [12].

If a username/userid of the above format is used, the second form MUST be used if and only if the value of
the ProductClass parameter is empty.

Examples:
012345-0123456789
012345-STB-0123456789
012345-Set%2DTop%2DBox-0123456789

The password used in either form of HTTP authentication SHOULD be a unique value for each CPE. That
is, multiple CPE SHOULD NOT share the same password. This password is a shared secret, and thus
MUST be known by both CPE and ACS. The method by which a shared secret becomes known to both
entities on initial CPE installation is outside the scope of this specification. Both CPE and ACS SHOULD
take appropriate steps to prevent unauthorized access to the password, or list of passwords in the case of an
ACS.

Digest Authentication

This section outlines requirements for use of digest authentication within the CPE WAN Management
Protocol. These requirements apply to authentication of connections for RPC exchanges as well as for file
transfers. Note that ACS and CPE play the role of HTTP client and server interchangeably for different
types of connections. The ACS plays the role of the HTTP client when making connection requests. The
CPE plays the role of the HTTP client when initiating connections to the ACS.

December 2007 © The Broadband Forum. All rights reserved. 24

3.4.6

3.5

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The CPE and the ACS MUST support the RFC 2617 “qop” option containing the value “auth”. According
to RFC 2617, this means that the HTTP client MUST use a new style digest mechanism when this option is
provided to it by the HTTP server.

When using digest authentication, for each new TCP connection opened, the ACS SHOULD use a new
nonce value and the CPE SHOULD use a new cnonce value.

Note — if SSL/TLS is not used for a CPE WAN Management Protocol session, the policy used by
the ACS for reusing nonce values for HTTP authentication can significantly affect the security of
the session. In particular, if the ACS re-uses a nonce value when re-authenticating across
multiple TCP connections, the ACS can be vulnerable to replay attacks. However, if SSL/TLS is
used for a session, then this risk is largely mitigated.

The CPE and the ACS MUST support the MD5 digest algorithm. The CPE MUST additionally support the
MD5-sess digest algorithm.

Additional HTTP Requirements
The following addional HTTP-related requirements are specified:

e Whenever the ACS sends an empty HTTP response, it MUST use the “204 (No Content)” HTTP
status code.

e Whenever the CPE sends an empty HTTP request, the length of the HTTP message-body MUST
be zero.

e The CPE MUST NOT make use of pipelining as defined in HTTP 1.1 [5].

Use of SOAP

The CPE WAN Management Protocol defines SOAP 1.1 [8] as the encoding syntax to transport the RPC
method calls and responses defined in Annex A.

The following describes the mapping of RPC methods to SOAP encoding:

e The encoding MUST use the standard SOAP 1.1 envelope and serialization namespaces:
e Envelope namespace identifier "http://schemas.xmlsoap.org/soap/envelope/"
e Serialization namespace identifier "http://schemas.xmlsoap.org/soap/encoding/"

e All elements and attributes defined as part of this version of the CPE WAN Management Protocol are
associated with the following namespace identifier:

e “urn:dslforum-org:cwmp-1-1”

e The namespace identifier for CPFE WAN Management Protocol version 1.n is always “urn:dslforum-
org:cwmp:1-n”, e.g. for v1.0 it was “urn:dslforum-org:cwmp:1-0” and for v1.42 it will be
“urn:dslforum-org:cwmp:1-42”.

e In SOAP Envelopes that they send, both ACS and CPE SHOULD use the namespace identifier
corresponding to the highest version that they support.

Note — in order to provide interoperability with v1.0 implementations, there are circumstances
where ACS and/or CPE need to use the v1.0 namespace identifier. These requirements are given
in sections 3.2.1.1 (CPE session retry), 3.7.1.1 (CPE session initiation) and 3.7.2.1 (ACS session
initiation).

e Both ACS and CPE MUST be able to extract the version from the namespace identifier in SOAP
Envelopes that they receive.

December 2007 © The Broadband Forum. All rights reserved. 25

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

e The data types used in Annex A correspond directly to the data types defined in the SOAP 1.1
serialization namespace. (In general, the types used in Annex A are restricted subsets of the
corresponding SOAP types.)

e Following the SOAP specification [8], elements specified as being of type “anySimpleType” MUST
include a type attribute to indicate the actual type of the element.

e Elements of a type other than “anySimpleType” MAY include a type attribute if and only if the
element is defined using a named data type in the RPC method XML schema in Annex A. If a type
attribute is included, the value of the type attribute MUST exactly match the named data type specified
in the schema.

e For an array argument, the argument name specified in the table in which the array is defined MUST
be used as the name of the overall array element. The name of the member elements of an array
MUST be the data type of the array as specified in the table in which the array is defined (excluding
the brackets and any length limitation given in parentheses), and MUST NOT be namespace qualified.
For example, an argument named ParameterL.ist, which is an array of ParameterValueStruct structures,
would be encoded as:

<ParameterList soap-enc:arrayType=""cwmp:ParameterValueStruct[2]"">
<ParameterValueStruct>
<name>Parameterl</name>
<value xsi:type=""someType'>1234</value>
</ParameterValueStruct>
<ParameterValueStruct>
<name>Parameter2</name>
<value xsi:type=""someType'>5678</value>
</ParameterValueStruct>
</ParameterList>

As a second example, the MethodList array in the GetRPCMethodsResponse would be encoded as:

<MethodList soap-enc:arrayType="xsd:string[3]"">
<string>GetRPCMethods</string>
<string>Inform</string>
<string>TransferComplete</string>
</MethodList>

Note — in the above examples, the XML namespace prefixes used are only examples. The actual
namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note — it is always necessary to specify an XML namespace prefix for the arrayType attribute.
For arrays of CWMP-specific types this will always be the CWMP namespace prefix, and for
arrays of other types it will always be the XML Schema namespace prefix or the SOAP encoding
namespace prefix.

e Regarding the SOAP specification for encoding RPC methods (section 7 of [8]), for each method
defined in Annex A, each argument listed in the method call represents an [in] parameter, while each
argument listed in the method response represents an [out] parameter. There are no [in/out] parameters
used.

e The RPC methods defined use the standard SOAP naming convention whereby the response message
corresponding to a given method is named by adding the “Response” suffix to the name of the method.

e A SOAP Envelope MUST contain exactly one Body element.

e A CPE MUST be able to accept a SOAP request with a total envelope size of at least 32 kilobytes
(32768 bytes) without resulting in a “Resources Exceeded” response.

e A CPE MUST be able to generate a SOAP response of any required length without resulting in a
“Resources Exceeded” response, i.e. there is no maximum CPE SOAP response length.

e An ACS MUST be able to accept a SOAP request with a total envelope size of at least 32 kilobytes
(32768 bytes) without resulting in a “Resources Exceeded” response.

December 2007 © The Broadband Forum. All rights reserved. 26

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

e An ACS MUST be able to generate a SOAP response of any required length without resulting in a
“Resources Exceeded” response, i.e. there is no maximum ACS SOAP response length.

e A fault response MUST make use of the SOAP Fault element using the following conventions:

e The SOAP Faultcode element MUST indicate the source of the fault, either Client or Server, as
appropriate for the particular fault. In this usage, Client represents the originator of the SOAP
request, and Server represents the SOAP responder. The recipient of the fault response need not
make use of the value of this element, and MAY ignore the SOAP faultcode element entirely.

e The SOAP faultstring sub-element MUST contain the string “CWMP fault”.

e The SOAP detai l element MUST contain a Fault structure. The RPC method XML schema in
Annex A formally defines this structure. This structure contains the following elements:

0 A FaultCode element that contains a single numeric fault code as defined in Annex A.
0 A FaultString element that contains a human readable description of the fault.

0 A SetParameterValuesFault element, to be used only in an error response to the
SetParameterValues method, that contains a list of one or more structures indicating the
specific fault associated with each parameter in error. This structure contains the following
elements:

0 A ParameterName element that contains the full path name of the parameter in error.

0 A FaultCode element that contains a single numeric fault code as defined in Annex A
that indicates the fault associated with the particular parameter in error.

0 A FaultString element that contains a human readable description of the fault for the
particular parameter in error.

Below is an example envelope containing a fault response:

<soap:Envelope
xmIns:soap=""http://schemas.xmlsoap.org/soap/envelope/*
xmIns:cwmp=""urn:dslforum-org: cwmp-1-0"">
<soap:Header>
<cwmp: ID soap:mustUnderstand=""1'">1234</cwmp: ID>
</soap:Header>
<soap:Body>
<soap:Fault>
<faultcode>Client</faultcode>
<faultstring>CWP fault</faultstring>
<detail>
<cwmp:Fault>
<FaultCode>9000</FaultCode>
<FaultString>Upload method not supported</FaultString>
</cwmp:Fault>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Below is an example envelope containing a fault response for a SetParameterVValues method call:

<soap:Envelope
xmlIns:soap=""http://schemas.xmlsoap.org/soap/envelope/"
xmIns:cwmp=""urn:dslforum-org: cwmp-1-0"*>
<soap:Header>
<cwmp: 1D soap:mustUnderstand=""1"">1234</cwmp: ID>
</soap:Header>
<soap:Body>
<soap:Fault>
<faultcode>Client</faultcode>
<faultstring>CWP fault</faultstring>

December 2007 © The Broadband Forum. All rights reserved. 27

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<detail>
<cwmp:Fault>
<FaultCode>9003</FaultCode>
<FaultString>Invalid arguments</FaultString>
<SetParameterValuesFault>
<ParameterName>
InternetGatewayDevice.Time.LocalTimeZone
</ParameterName>
<FaultCode>9012</FaultCode>
<FaultString>Not a valid time zone value</FaultString>
</SetParameterValuesFault>
<SetParameterValuesFault>
<ParameterName>
InternetGatewayDevice.Time.LocalTimeZoneName
</ParameterName>
<FaultCode>9012</FaultCode>
<FaultString>String too long</FaultString>
</SetParameterValuesFault>
</cwmp:Fault>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Note — in the above examples, the XML namespace prefixes used are only examples. The actual
namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note — in the above example, the CWMP namespace identifier “urn:dslforum-org:cwmp-1-0"" is
only an example and is not necessarily the version that is defined by this specification.

A fault response MUST only be sent in response to a SOAP request. A fault response MUST NOT be
sent in response to a SOAP response or another fault response.

If a fault response does not follow all of the above requirements, the SOAP message MUST be deemed
invalid by the recipient. The consequences of invalid SOAP on the CPE WAN Management Protocol
session are described in section 3.7.

e When processing a received envelope, both ACS and CPE MAY ignore: (a) any unknown XML
elements® and their sub elements or content, (b) any unknown XML attributes and their values, (c) any
embedded XML comments, and (d) any XML processing instructions. Alternatively the ACS and CPE
MAY explicitly validate the received XML and reject an envelope that includes unknown elements.
Note that this precludes extending existing messages by including additional arguments without
changing the name of the message.

e Ifan RPC method requires references to XML Schema namespaces (for example for the “type”
attribute, or for references to XML Schema data types), these references MUST be to the 2001
versions of these namespace definitions, specifically, http://www.w3.0rg/2001/XMLSchema-instance
and http://www.w3.0rg/2001/XMLSchema. The recipient MAY reject an RPC method that references
a different version of either of these namespaces.

As an example of an RPC method encoded as described above, a GetParameterNames request would be
encoded as:

<soap-env:Envelope xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"

xmlIns:soap-env="http://schemas.xmlsoap.org/soap/envelope/*
xmlIns:xsd=""http://ww.w3.0rg/2001/XMLSchema’*
xmlIns:xsi="http://wmw.w3.org/2001/XMLSchema-instance"
xmlIns:cwmp=""urn:dslforum-org: cwmp-1-0"">

<soap-env:Header>

<cwmp: ID soap-env:mustUnderstand=""1"">0</cwmp: ID>
</soap-env:Header>

* With the exception that reception of an unknown SOAP action MUST result in a fault response
indicating Method Not Supported (see Annex A).

December 2007 © The Broadband Forum. All rights reserved. 28

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<soap-env:Body>

</soap-env:Body>
</soap-env:Envelope>

<cwmp:GetParameterNames>
<ParameterPath>0Object.</ParameterPath>
<NextlLevel>0</NextLevel>

</cwmp:GetParameterNames>

Note — in the above example, the XML namespace prefixes used are only examples. The actual
namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note — the CWMP namespace prefix is specified only for elements that are defined at the top level
of the CWMP schema (ID and GetParameterNames in the above example). It is incorrect to
specify a namespace on elements contained within such elements (ParameterPath and NextLevel
in the above example). This is because the CWMP schema specifies an elementFormDefault value
of “unqualified”.

Note — in the above example, the CWMP namespace identifier ““urn:dslforum-org:cwmp-1-0"" is
only an example and is not necessarily the version that is defined by this specification.

The CPE WAN Management Protocol defines a series of SOAP Header elements as specified in Table 4.

Table 4 — SOAP Header Elements

Tag Name

Description

ID

This header element MAY be used to associate SOAP requests and responses using a unique identifier
for each request, for which the corresponding response contains the matching identifier. The value of
the identifier is an arbitrary string and is set at the discretion of the requester.

If used in a SOAP request, the ID header MUST appear in the matching response (whether the response
is a success or failure).

Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true) for
this header.

HoldRequests

This header MAY be included in envelopes sent from an ACS to a CPE to regulate transmission of
requests from the CPE. This header MUST NOT appear in envelopes sent from a CPE to an ACS.

This tag has Boolean values of “0” (false) or “1” (true). If the tag is not present, this is interpreted as
equivalent to a “0” (false).

The behavior of the CPE on reception of this header is defined in section 3.7.1.3. Support in the CPE for
this header is REQUIRED.

Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true) for
this header.

Below is an example of a message showing the use of all of the defined headers:

<soap:Envelope
xmlIns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:cwmp=""urn:dslforum-org: cwmp-1-0"*>
<soap:Header>

</soap:Header>
<soap:Body>

</soap:Body>
</soap:Envelope>

<cwmp: ID soap:mustUnderstand=""1'">1234</cwmp: ID>
<cwmp:HoldRequests soap:mustUnderstand=""1"">0</cwmp:HoldRequests>

<cwmp:Action>
<argument>value</argument>
</cwmp:Action>

Note — in the above example, the XML namespace prefixes used are only examples. The actual
namespace prefix values are arbitrary, and are used only to refer to a namespace declaration.

Note — in the above example, the CWMP namespace identifier “urn:dslforum-org:cwmp-1-0"" is
only an example and is not necessarily the version that is defined by this specification.

December 2007

© The Broadband Forum. All rights reserved. 29

3.6

3.7

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

RPC Support Requirements

Table 5 provides a summary of all methods, and indicates the conditions under which implementation of
each RPC method defined in Annex A is REQUIRED or OPTIONAL.

Table 5 — RPC message requirements

Method name

CPE requirement

ACS requirement

CPE methods Responding Calling
GetRPCMethods REQUIRED OPTIONAL
SetParameterValues REQUIRED REQUIRED
GetParameterValues REQUIRED REQUIRED
GetParameterNames REQUIRED REQUIRED
SetParameterAttributes REQUIRED OPTIONAL
GetParameterAttributes REQUIRED OPTIONAL
AddObject REQUIRED OPTIONAL
DeleteObject REQUIRED OPTIONAL
Reboot REQUIRED OPTIONAL
Download REQUIRED® REQUIRED®
Upload OPTIONAL OPTIONAL
FactoryReset OPTIONAL OPTIONAL
GetQueuedTransfers OPTIONAL® OPTIONAL
GetAllQueuedTransfers OPTIONAL OPTIONAL
Schedulelnform OPTIONAL OPTIONAL
SetVouchers OPTIONAL’ OPTIONAL’
GetOptions OPTIONAL’ OPTIONAL’
ACS methods Calling Responding
GetRPCMethods OPTIONAL REQUIRED
Inform REQUIRED REQUIRED
TransferComplete REQUIRED®? REQUIRED’
AutonomousTransferComplete OPTIONAL REQUIRED
RequestDownload OPTIONAL OPTIONAL
Kicked OPTIONAL OPTIONAL

Transaction Session Procedures

All transaction sessions MUST begin with an Inform message from the CPE contained in the initial HTTP
POST. This serves to initiate the set of transactions and communicate the limitations of the CPE with
regard to message encoding. An Inform message MUST NOT occur more than once during a session (this
limitation does not apply to the potential need to retransmit an Inform request due to an HTTP

“401 Unauthorized” status code received as part of the HTTP authentication process, or due to an HTTP
3xx status code received as part of an HTTP redirect).

REQUIRED only if file downloads of any type are supported.

DEPRECATED in favor of GetAllQueuedTransfers.

If the voucher mechanism is supported, both the SetVVouchers and GetOptions methods are REQUIRED.
REQUIRED only if file downloads or uploads of any type are supported.

REQUIRED only if the ACS supports initiation of file downloads or uploads.

© o N o O

December 2007 © The Broadband Forum. All rights reserved. 30

3.7.1

3.7.1.1

3.7.1.2

3.7.1.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The session ceases when both the ACS and CPE have no more requests to send and no responses remain
due from either the ACS or the CPE. At such time, the CPE MUST close the connection.

No more than one transaction session between a CPE and its associated ACS can exist at a time.

Note — a transaction session is intended to persist only as long as there are messages to be
transferred in either direction. A session and its associated TCP connection are not intended to
be held open after a specific exchange of information completes.

CPE Operation

Session Initiation

The CPE will initiate a transaction session to the ACS as a result of the conditions listed in section 3.2.1.
Once the connection to the ACS is successfully established, the CPE initiates a session by sending an initial
Inform request to the ACS. This indicates to the ACS the current status of the CPE and that the CPE is
ready to accept requests from the ACS.

The CPE MUST consider the session to have been successfully initiated if and only if it receives a
successful Inform response.

If the CPE receives a successful Inform response in which the namespace identifier indicates that the ACS
supports only v1.0 of the CPE WAN Management Protocol, the CPE MUST revert to v1.0 for the
remainder of the session.

Note — v1.0 of the protocol is a special case because it did not consider interoperability between
different versions of the protocol. New requirements added in v1.1 guarantee that a CPE and an
ACS which both support v1.1 (or later) will interoperate without the need for either party to revert
to an earlier version (this implies that later minor versions will not add mandatory RPC methods).

From the time a session is initiated until the session is terminated, the CPE MUST ensure the transactional
integrity of all Parameters accessible via the CPE WAN Management Protocol. During the course of a
session, all configurable Parameters of the CPE MUST appear to the ACS as a consistent set modified only
by the ACS. Throughout the session the CPE MUST shield the ACS from seeing any updates to the
Parameters performed by other entities. This includes the values of configurable parameters as well as
presence or absence of configurable parameters and objects. The means by which the CPE achieves this
transactional integrity is a local matter.

The CPE MUST take any necessary steps to ensure transactional integrity of the session. For example, it
might be necessary, in exceptional cases, for the CPE to terminate a LAN-side management session in
order to meet CWMP session establishment requirements.

Incoming Requests

While in a session (after the session was successfully initiated, but before the session termination criteria
described in 3.7.1.4 have been met), on reception of a SOAP request from the ACS, the CPE MUST
respond to that request in the next HTTP POST that it sends to the ACS.

Outgoing Requests

While in a session (after the session was successfully initiated, but before the session termination criteria
described in 3.7.1.4 have been met), if the CPE has one or more requests to send to the ACS, the CPE
MUST send one of these requests in the next HTTP POST if and only if all of the following conditions are
met:

e The most recently received HTTP response from the ACS did not contain a SOAP request.

e The ACS has indicated that HoldRequests is false (see section 3.5). This condition is met if and only if
the most recently received HTTP response from the ACS contained one of the following:

0 A SOAP envelope with the HoldRequests header set to a value of false.

December 2007 © The Broadband Forum. All rights reserved. 31

3.7.1.4

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

0 A SOAP envelope with no HoldRequests header.
0 No SOAP envelope (an empty HTTP response).

e Atany prior time during the current session, the CPE has not sent an empty HTTP POST at a time that
the ACS had indicated that HoldRequests is false (as described above).

If the CPE has more than one request pending when the above criteria are met, the choice of which request
to send is at the discretion of the CPE unless otherwise specified.

While in a session, if any of the above conditions are not met or if the CPE has no requests to send to the
ACS, and if the most recent HTTP response from the ACS did not contain a SOAP request, the CPE MUST
send an empty HTTP POST.

Once the CPE has sent an empty HTTP POST when the most recent HoldRequests was false (see section
3.5), the CPE MUST NOT send any further requests for the remainder of the session. In this case, if the
CPE has additional requests to send to the ACS, the CPE MUST wait until a subsequent session to send

these requests.

Table 6 summarizes what the CPE MUST send to the ACS as long as the session is in progress (after the
session was successfully initiated, but before the session termination criteria described in 3.7.1.4 have been
met).

Table 6 — CPE Message Transmission Constraints

HoldRequests | ACS request outstanding No ACS request outstanding
CPE requests pending™® False Response Request

True Response Empty HTTP POST
No CPE requests pending - Response Empty HTTP POST

Session Termination
The CPE MUST terminate the transaction session when all of the following conditions are met:

1) The ACS has no further requests to send the CPE. The CPE concludes this if and only if the most
recent HTTP response from the ACS was empty.

2) The CPE has no further requests to send to the ACS and the CPE has issued an empty HTTP
POST to the ACS while HoldRequests is false (which indicates to the ACS that the CPE has no
further requests for the remainder of the session). As defined in Table 6, if this condition has not
been met but the CPE has no further requests or responses, it MUST send an empty HTTP POST,
which will then fulfill this condition.

3) The CPE has received all outstanding response messages from the ACS.
4) The CPE has sent all outstanding response messages to the ACS resulting from prior requests.

The CPE MUST also consider a session unsuccessfully terminated if it has received no HTTP response
from an ACS for a locally determined time period of not less than 30 seconds. If the CPE fails to receive
an HTTP response, the CPE MUST NOT attempt to retransmit the corresponding HTTP request as part of
the same session.

If the CPE receives a SOAP-layer fault in response to an Inform request with a fault code other than “Retry
request” (fault code 8005), the CPE MUST consider the session to have terminated unsuccessfully.

If the CPE receives an HTTP response from the ACS for which the XML is not well-formed, for which the
SOARP structure is deemed invalid, that contains a SOAP fault that is not in the form specified in section

19 The CPE can have requests pending only if the CPE has not already sent an empty HTTP POST when

the most recent HoldRequests was false. Otherwise, the CPE is considered to have no requests pending.

December 2007 © The Broadband Forum. All rights reserved. 32

3.7.1.5

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

3.5, or for which the CPE deems that the protocol has been violated, the CPE MUST consider the session to
have terminated unsuccessfully.

If the CPE receives an HTTP response from the ACS with a fault status code (a 4xx or 5xx status code) that
is not otherwise handled by the CPE, the CPE MUST consider the session to have terminated
unsuccessfully. Note that while the CPE would accept an HTTP response with a “401 Unauthorized” status
code as part of the normal authentication process, when the CPE subsequently attempts to authenticate, if
the resulting HTTP response contains a “401 Unauthorized” status code, the CPE MUST consider the
session to have terminated unsuccessfully.

If the above conditions are not met, the CPE MUST continue the session.

If the CPE receives a SOAP-layer fault response as defined in section 3.5 with a fault code other than
“Retry request” (fault code 8005) in response to any method other than Inform, the CPE MUST continue
with the remainder of the session. That is, a fault response of this type MUST NOT cause the session to
unsuccessfully terminate.

Note — in a fault condition, it is entirely at the discretion of the ACS whether its fault response is a
SOAP-layer fault, which would cause the session to continue, or an HTTP-layer fault, which
would cause the session to terminate unsuccessfully.

If one or more messages exchanged during a session results in the CPE needing to reboot to complete the
requested operation, the CPE MUST wait until after the session has cleanly terminated based on the above
criteria before performing the reboot.

If the session terminates unexpectedly, the CPE MUST retry the session as specified in section 3.2.1.1. The
CPE MAY place locally specified limits on the number of times it attempts to reestablish a session in this
case.

Events

An event is an indication that something of interest has happened that requires the CPE to notify the ACS
via an Inform request defined in section A.3.3.1. The CPE MUST attempt to deliver every event at least
once. If the CPE is not currently in a session with the ACS, it MUST attempt to deliver events immediately;
otherwise, it MUST attempt to deliver them after the current session terminates. The CPE MUST receive
confirmation from the ACS for it to consider an event successfully delivered. Once the CPE has delivered
an event successfully, the CPE MUST NOT send the same event again. On the other hand, the ACS MUST
be prepared to receive the same event more than once because the ACS might have sent a response the CPE
never receives. Many types of events (e.g., PERIODIC, VALUE CHANGE) can legally appear in
subsequent sessions even when successfully delivered in the earlier session. In such cases, an event in the
later session indicates the reoccurrence of an event of the same type rather than an attempt to retry an event
delivery failure.

For every type of event there is a policy that dictates if and when the CPE MUST retry event delivery if a
previous delivery attempt failed. When event delivery is retried it MUST be in the immediately following
session; events whose delivery fails in one session cannot be omitted in the following session and then later
redelivered.

For most events, delivery is confirmed when the CPE receives a successful InformResponse. Four standard
event types (KICKED, TRANSFER COMPLETE, AUTONOMOUS TRANSFER COMPLETE,
REQUEST DOWNLOAD) indicate that one or more methods (Kicked [section A.4.2.1], TransferComplete
[section A.3.3.2], AutonomousTransferComplete [section A.3.3.3], RequestDownload [section A.4.2.2]
respectively) will be called later in the session, and it is the successful response to these methods that
indicates event delivery. The CPE MAY also send vendor-specific events (using the syntax specified in
Table 7), in which case successful delivery, retry, and discard policy is subject to vendor definition.

If no new events occur while the CPE has some events to redeliver, the CPE MUST attempt to redeliver
them according to the schedule defined by the session retry policy in section 3.2.1.1.

December 2007 © The Broadband Forum. All rights reserved. 33

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Below is a table of event types, their codes in an Inform request, their cumulative behavior, the responses
the CPE MUST receive to consider them successfully delivered, and the policy for retrying and/or
discarding them if delivery is unsuccessful.

Table 7 — Event Types

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy

"0 BOOTSTRAP" | Single Indicates that the session was InformResponse The CPE MUST
established due to first-time CPE NOT ever discard
installation or a change to the ACS an undelivered
URL. BOOTSTRAP
The specific conditions that MUST event.
result in the BOOTSTRAP All other
EventCode are: undelivered events
e First time connection of the CPE lc\i/ilgcsa-:dt;z on

to the ACS from the factory. BOOTSTRAP.
e First time connection of the CPE

to the ACS after a factory reset.
e First time connection of the CPE

to the ACS after the ACS URL

has been modified in any way.
Note that as with all other
EventCode values, the
BOOTSTRAP EventCode MAY be
included in the Event array along
with other EventCode values. It
would be expected, for example,
that on the initial boot of the CPE
from the factory, the CPE would
include both the BOOTSTRAP and
BOOT EventCodes.

"1 BOOT" Single Indicates that the session was InformResponse The CPE MUST
established due to the CPE being retry delivery until it
powered up or reset. This includes reboots before
initial system boot, as well as reboot discarding it.
due to any cause, including use of
the Reboot method.

"2 PERIODIC" Single Indicates that the session was InformResponse The CPE MUST
established on a periodic Inform NOT ever discard
interval. an undelivered

PERIODIC event.

"3 SCHEDULED" | Single Indicates that the session was InformResponse The CPE MUST
established due to a NOT ever discard
Schedulelnform method call. an undelivered
This event code MUST only be used SCHtEDULED
with the “M Schedulelnform” event event.
code (see “M Schedulelnform”,
below).

December 2007 © The Broadband Forum. All rights reserved. 34

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy

"4 VALUE Single Indicates that since the last InformResponse The CPE MUST

CHANGE" successful Inform (under the retry delivery until it
conditions defined in section reboots or the ACS
A.3.2.4), the value of one or more URL is modified
parameters with Passive or Active before discarding
Notification enabled (including it.
parameters defined to require
Forced Active Notification) has been
modified (even if its value has
changed back to the value it had at
the time of the last successful
Inform).

If this EventCode is included in the
Event array, all such modified
parameters MUST be included in
the ParameterList in this Inform. If
this event is ever discarded then the
list of modified parameters MUST
be discarded at the same time.

"5 KICKED" Single Indicates that the session was KickedResponse The CPE MAY
established for the purpose of web retry delivery at its
identity management (see Annex D) discretion.
and that a Kicked method (see
section A.4.2.1) will be called one or
more times during this session.

“6 Single Indicates that the session was InformResponse The CPE MUST

CONNECTION established due to a Connection NOT retry delivery.

REQUEST” Request from the ACS as described
in section 3.2.

“7 TRANSFER Single Indicates that the session was TransferCompleteResponse | The CPE MUST

COMPLETE” established to indicate the NOT ever discard
completion of a previously an undelivered
requested download or upload TRANSFER
(either successful or unsuccessful) COMPLETE event.
and that the TransferComplete
method will be called one or more
times during this session.

This event code MUST only be used
with the “M Download” and/or “M
Upload” event codes (see “M
Download” and “M Upload”, below).

"8 Single Used when reestablishing a InformResponse The CPE MUST

DIAGNOSTICS connection to the ACS after retry delivery until it

COMPLETE" completing one or more diagnostic reboots before
test initiated by the ACS. discarding it.

“9 REQUEST Single Indicates that the session was RequestDownloadResponse | The CPE MAY

DOWNLOAD” established for the CPE to call the retry delivery at its
RequestDownload method (see discretion.
section A.4.2.2) one or more times.

“10 Single Indicates that the session was AutonomousTransfer- The CPE MUST

AUTONOMOUS established to indicate the CompleteResponse NOT ever discard

TRANSFER completion of a download or upload an undelivered

COMPLETE" that was not specifically requested AUTONOMOUS
by the ACS (either successful or TRANSFER
unsuccessful) and that the - COMPLETE event.
AutonomousTransferComplete
method will be called one or more
times during this session.

“M Reboot” Multiple The CPE rebooted upon request InformResponse The CPE MUST
from the ACS through the use of the NOT ever discard
Reboot RPC. Overlaps with one of an undelivered “M
the causes that can generate a “1 Reboot” event.
BOOT"” event code.

December 2007 © The Broadband Forum. All rights reserved. 35

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy
“M Multiple The ACS requested a scheduled InformResponse The CPE MUST
Schedulelnform” Inform. NOT ever discard
an undelivered “M
Schedulelnform”
event.
“M Download” Multiple A content download previously TransferCompleteResponse | The CPE MUST
requested by the ACS using the NOT ever discard
Download method (see section an undelivered “M
A.3.2.8) has finished. Overlaps with Download” event.
“7 TRANSFER COMPLETE".
“M Upload” Multiple A content upload previously TransferCompleteResponse | The CPE MUST
requested by the ACS using the NOT ever discard
Upload method (see section an undelivered “M
A.4.1.5) has finished. Overlaps with Upload” event.
“7 TRANSFER COMPLETE".
"M " <vendor- Not The action requested by a vendor- | Not specified Not specified
specific method> | specified specific method is complete. The
action taken by the CPE and
response by the ACS is vendor-
specific. A vendor-specific method
name MUST be in the form
specified in section A.3.1.1.
For example:
“M X_012345_MyMethod”
“X“<OUl>"" Not Vendor-specific event. The OUI Not specified Not specified
<event> specified after the “X" and space is an
organizationally unique identifier
represented as a six hexadecimal-
digit value using all upper-case
letters and including any leading
zeros. The value MUST be a valid
OUI as defined in [9], and MUST be
one that is assigned to the
organization that defined this
vendor-specific event. The value
and interpretation of <event> is
vendor-specific.
For example:
“X 012345 MyEvent”
December 2007 © The Broadband Forum. All rights reserved. 36

3.7.1.6

3.7.2

3.7.2.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The Cumulative Behavior column of the above table distinguishes between event types that are not
cumulative (“Single”) and those that are cumulative (“Multiple™). For example, if the CPE reboots while
the previous “1 BOOT” event has not yet been delivered, it makes no sense for the next Inform to contain
two “1 BOOT” Event array entries. In contrast, if a download completes while the previous “M
Download” event has not yet been delivered, the next Inform would contain two “M Download” Event
array entries because each relates to a different ACS request. The “Single” and “Multiple” cumulative
behaviors are defined as follows:

e Ifan event with “Single” cumulative behavior occurs, the list of events in the next Inform MUST
contain only one instance of this EventCode, regardless of whether there are any undelivered events of
the same type.

e If an event with “Multiple” cumulative behavior occurs, the new EventCode MUST be included in the
list of events, independent of any undelivered events of the same type, and this MUST NOT affect any
such undelivered events.

When one or more events are directly related to the same root cause, then all such events MUST be
included in the Event array. Below are examples of such cases (this list is not exhaustive):

e Reboot caused by the Reboot RPC method. In this case the Inform MUST include at least the
following EventCode values:

"1 BOOT"
"M Reboot"

e TransferComplete sent in a new session due to a prior Download request, where there is no reboot
associated with the completion of the transfer:

"7 TRANSFER COMPLETE"
"M Download"

e One or more parameter values for which Passive Notification has been set have changed since the most
recent Inform, and a periodic Inform occurs (in this case, the events MUST be included in the same
Inform because for Passive Notifications, the Inform in which the “4 VALUE CHANGE” event would
occur would have to result from some other cause—in this example, a periodic inform):

"2 PERIODIC"
"4 VALUE CHANGE™

For events that are due to unrelated causes, if they occur simultaneously, the CPE SHOULD include all
such events in the same Inform message, but MAY send separate Inform messages for each such event. An
example of unrelated events is:

"2 PERIODIC"
"7 TRANSFER COMPLETE™

Method Retry Behavior

If in response to a request from the CPE the CPE receives a “Retry request” response (fault code 8005)
from the ACS, the CPE MUST resend the identical request in the next HTTP POST within the current
session. This behavior applies to all ACS methods (including Inform).

If instead the CPE receives a fault response with any fault code other than 8005 in response to any method
other than Inform, the CPE MUST proceed with the session, and MUST NOT attempt to retry the method
(such a response in the case of Inform will terminate the session, as described in section 3.7.1.4).

ACS Operation

Session Initiation

Upon receiving the initial Inform request from the CPE, if the ACS wishes to allow the initiation of the
session, it MUST respond with an Inform response.

December 2007 © The Broadband Forum. All rights reserved. 37

3.7.2.2

3.7.2.3

3.7.2.4

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

If the ACS receives an initial Inform request from the CPE in which the namespace identifier indicates that
the CPE supports only v1.0 of the CPE WAN Management Protocol, the ACS MUST revert to v1.0 for the
entire session.

Note — v1.0 of the protocol is a special case because it did not consider interoperability between
different versions of the protocol. New requirements added in v1.1 guarantee that a CPE and an
ACS which both support v1.1 (or later) will interoperate without the need for either party to revert
to an earlier version (this implies that later minor versions will not add mandatory RPC methods).

Note — an ACS that supports only v1.0 of the CPE WAN Management Protocol will expect the
initial Inform request from the CPE to use the v1.0 namespace identifier ““urn:dslforum-
org:cwmp-1-0”, and to contain only event types that were defined in v1.0 of the protocol. The
behavior of such an ACS when it receives an initial Inform from a CPE that supports v1.1 (or
later) is not possible to predict. The ACS might fail to notice that the CPE supports a later
version, in which case it will respond with an Inform response; it might return a SOAP-layer fault;
or it might return an HTTP-layer fault. If it returns a fault, the CPE will need to decide whether
to revert to v1.0 of the protocol when retrying the failed session.

The ACS MUST ignore any event types that it does not recognize.

Incoming Requests

While in a session (after the session was successfully initiated, but before the session termination criteria
described in 3.7.2.4 have been met), on reception of a SOAP request from the CPE, the ACS MUST
respond to that request in the next HTTP response sent to the CPE.

If the ACS wishes to prevent the CPE sending requests during some portion of the session, it MAY do so
by setting the HoldRequests header to true in each envelope transmitted to the CPE until the ACS again
wishes to allow requests from the CPE. The ACS MUST allow CPE requests before completion of a
session (this MAY be done either explicitly via the HoldRequests header or implicitly by sending an empty
HTTP response).

Outgoing Requests

While in a session (after the session was successfully initiated, but before the session termination criteria
described in 3.7.2.4 have been met), if the ACS has one or more requests to send to the CPE and the most
recent HTTP POST from the CPE did not contain a SOAP request, the ACS MUST send one of these
requests in the next HTTP response.

Otherwise, while in a session, if the ACS has no requests to send to the CPE and the most recent HTTP
POST from the CPE did not contain a SOAP request, the ACS MUST send an empty HTTP response.

Table 8 summarizes what the ACS MUST send to the CPE as long as the session is in progress (after the
session was successfully initiated, but before the session termination criteria described in 3.7.2.4 have been
met).

Table 8 — ACS Message Transmission Constraints

CPE request outstanding No CPE request outstanding
ACS requests pending Response Request
No ACS requests pending Response Empty HTTP response

Session Termination

Since the CPE is driving the HTTP connection to the ACS, only the CPE is responsible for connection
initiation and teardown.

The ACS MUST consider the session terminated when all of the following conditions are met:

1) The CPE has no further requests to send the ACS. The ACS concludes this if and only if it has
received an empty HTTP POST from the CPE while HoldRequests is false.

December 2007 © The Broadband Forum. All rights reserved. 38

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

2) The ACS has no further requests to send the CPE and the most recent HTTP response the ACS
sent to the CPE was empty (which indicates to the CPE that the ACS has no further requests).

3) The ACS has sent all outstanding response messages to the CPE resulting from prior requests.
4) The ACS has received all outstanding response messages from the CPE.

If all of the above criteria have been met before the ACS has sent its final HTTP response, the final HTTP
response from the ACS MUST be empty.

If the above criteria have not all been met, but the ACS has not received an HTTP POST from a given CPE
within a locally defined timeout of not less than 30 seconds, it MAY consider the session terminated. In
this case, the ACS MAY attempt to reestablish a session by performing a Connection Request (see section
3.2.2).

If the ACS receives an HTTP POST from the CPE for which the XML is not well-formed, for which the
SOARP structure is deemed invalid, or that contains a SOAP fault that is not in the form specified in section
3.5, the ACS MUST respond to the CPE with an HTTP 400 status code (Bad Request), and MUST consider
the session to have terminated unsuccessfully. This fault response MUST NOT contain any SOAP content,
but MAY contain human-readable text that further explains the nature of the fault.

If the ACS receives a request associated with a session that it considers expired, or if the ACS determines
that some other protocol violation has occurred, or for other reasons at the discretion of the ACS, the ACS
MAY cause a session to terminate unsuccessfully by responding to the CPE with an HTTP 400 status code
(Bad Request). This HTTP response MUST NOT contain any SOAP content, but MAY contain human
readable-text that further explains the nature of the fault.

If the ACS receives a SOAP fault response from the CPE, as defined in section 3.5, the ACS MUST
interpret any unrecognized fault code between 9000 and 9799 (inclusive) the same as 9001 (Request
denied), and MAY choose among the following actions:

e The ACS MAY force the unsuccessful termination of the session. To do this, the ACS MUST respond
to the CPE with an HTTP 400 status code (Bad Request). This HTTP response MUST NOT contain
any SOAP content, but MAY contain human readable-text that further explains the nature of the fault.
This will result in the CPE retrying the session.

e The ACS MAY attempt to terminate the session successfully, in which case the CPE will not attempt
to retry the session. To do this, the ACS would send no more requests to the CPE, and would follow
the rules defined above to determine when the session terminates.

e The ACS MAY continue with the session, sending additional requests to the CPE.

December 2007 © The Broadband Forum. All rights reserved. 39

CPE WAN Management Protocol v1.1

3.7.3 Transaction Examples

TR-069 Issue 1 Amendment 2

In the example shown in Figure 3, the ACS first reads a set of parameter values, and based on the result,

sets some parameter values.

Figure 3 — Transaction Session Example

CPE

ACS

Open connection

SSL initiation

<

>

HTTP post

Inform request

HTTP response

Inform response

HTTP post (empty)

HTTP response

GetParameterValues request

HTTP post

GetParameterValues response

HTTP response

SetParameterValues request

HTTP post

SetParameterValues response

HTTP response (empty)

Close connection

December 2007

© The Broadband Forum. All rights reserved. 40

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

In the example shown in Figure 4, the ACS first initiates a file download, and the CPE sends a
TransferComplete later in the same session. Note that this scenario could occur only if the file download is
very short and the CPE is capable of performing it in parallel with the ongoing CPE WAN Management
Protocol session (which a CPE is not required to do). To allow this possibility, the ACS sets HoldRequests
equal to true until it has completed sending requests to the CPE.

Figure 4 — Example with the ACS using HoldRequests equal true

CPE ACS
Open connection >
< SSL initiation >
HTTP post

Y

Inform request

HTTP response
Inform response (HoldRequests = true)

HTTP post (empty)

Y

HTTP response
Download request (HoldRequests = true)

HTTP post
Download response (status = 1)

Y

HTTP response (empty)

HTTP post
TransferComplete request

Y

HTTP response
TransferComplete response

HTTP post (empty)

Y

HTTP response (empty)

Close connection

A4

December 2007 © The Broadband Forum. All rights reserved. 41

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Normative References

The following documents are referenced by this specification. Where the protocol defined in this
specification depends on a referenced document, support for all required components of the referenced
document is implied unless otherwise specified.

The following references are associated with document conventions or context for this specification, but are
not associated with requirements of the CPE WAN Management Protocol itself.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt

[2] TR-046, Auto-Configuration Architecture & Framework, Broadband Forum Technical Report

[3] TR-062, Auto-Configuration for the Connection Between the DSL Broadband Network Termination
(B-NT) and the Network using ATM, Broadband Forum Technical Report

[4] TR-044, Auto-Configuration for Basic Internet (IP-based) Services, Broadband Forum Technical
Report

The following references are associated with required components of the CPE WAN Management
Protocol.

[5] RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt

[6] RFC 2617, HTTP Authentication: Basic and Digest Access Authentication,
http://www.ietf.org/rfc/rfc2617.txt

[7] RFC 2965, HTTP State Management Mechanism, http://www.ietf.org/rfc/rfc2965.txt
[8] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508
[9] Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/fags/OUI.html

[10] The SSL Protocol, Version 3.0, http://wp.netscape.com/eng/ssl3
[11]RFC 2246, The TLS Protocol, Version 1.0, http://www.ietf.org/rfc/rfc2246.txt
[12] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

[13] TR-106 Amendment 1, Data Model Template for TR-069-Enabled Devices, Broadband Forum
Technical Report

The following references are associated with optional or recommended components of the CPE WAN
Management Protocol.

[14] RFC 2132, DHCP Options and BOOTP Vendor Extensions, http://www.ietf.org/rfc/rfc2132.txt
[15] XML-Signature Syntax and Processing, http://www.w3.0rg/2000/09/xmldsig

[16] PKCS #7, Cryptographic Message Syntax Standard, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
7/index.html or http://www.ietf.org/rfc/rfc2315.txt

[17]Port Numbers, http://www.iana.org/assignments/port-numbers

[18] IANA Private Enterprise Numbers registry, http://www.iana.org/assignments/enterprise-numbers
[19] RFC 2104, HMAC: Keyed-Hashing for Message Authentication, http://www.ietf.org/rfc/rfc2104.txt
[20] RFC 2131, Dynamic Host Configuration Protocol, http://www.ietf.org/rfc/rfc2131.txt

[21] RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATS), http://www.ietf.org/rfc/rfc3489.txt

December 2007 © The Broadband Forum. All rights reserved. 42

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

[22] RFC 3925, Vendor-ldentifying Vendor Options for Dynamic Host Configuration Protocol version 4
(DHCPv4), http://www.ietf.org/rfc/rfc3925.txt

[23]HTML 4.01 Specification, http://www.w3.org/TR/html4

[24] TR-098 Amendment 1, Internet Gateway Device Data Model for TR-069, Broadband Forum Technical
Report

[25] TR-104, Provisioning Parameters for VolP CPE, Broadband Forum Technical Report

December 2007 © The Broadband Forum. All rights reserved. 43

Al

A.2

A21

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Annex A. RPC Methods

Introduction

In the CPE WAN Management Protocol, a remote procedure call mechanism is used for bi-directional
communication between a CPE device and an Auto-configuration Server (ACS). This Annex specifies
version 1 of the specific procedure calls (methods) that are defined. This includes both methods initiated
by an ACS and sent to a CPE, as well as methods initiated by a CPE and sent to an ACS.

This specification is intended to be independent of the syntax used to encode the defined RPC methods.
The particular encoding syntax to be used in the context of the CPE WAN Management Protocol is defined
in section 3.5.

RPC Method Usage

Data Types

The RPC methods defined in this specification make use of a limited subset of the default SOAP data types
[8]. The complete set of types utilized in this specification along with the notation used to represent these
types is listed in Table 9.

Table 9 — Data types

Type Description

string For strings listed in this specification, a maximum allowed length can be listed using the form
string(N), where N is the maximum string length in characters.

For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated
value determines the maximum length. If a string does not have an explicitly indicated maximum
length or is not an enumeration, the default maximum is 16 characters. Action arguments containing
strings longer than the specified maximum MAY result in an “Invalid arguments” error response.

int Integer in the range —2147483648 to +2147483647, inclusive.

For some int types listed, a value range is given using the form int{fMin:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit.

unsignedint Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedint types listed, a value range is given using the form unsignedint{Min:Max], where
the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are
considered interchangeable, where both equivalently represent the logical value true. Similarly, the
values “0” and “false” are considered interchangeable, where both equivalently represent the logical
value false.

December 2007 © The Broadband Forum. All rights reserved. 44

A.2.2

A.3

A31

A3.1l1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Type Description

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise
in the definition of a variable of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot,
where the boot time is assumed to be the beginning of the first day of January of year 1, or
0001-01-01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be
expressed as 0001-01-03T03:04:05. Relative time since boot MUST be expressed using an
untimezoned representation. Any untimezoned value with a year value less than 1000 MUST be
interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be
used: 0001-01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST
use timezoned representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary.

A maximum allowed length can be listed using the form base64(N), where N is the maximum length in
characters after Base64 encoding.

anySimpleType The value of an element defined to be of type “anySimpleType” MAY be of any simple data type,
including (but not limited to) any of the other types listed in this table.

Following the SOAP specification [8], elements specified as being of type “anySimpleType” MUST
include a type attribute to indicate the actual type of the element. For example:

<ParameterValueStruct>
<Name>InternetGatewayDevice.ProvisioningCode</Name>
<Value xsi:type="xsd:string">code12345</Value>
</ParameterValueStruct>

The namespaces xsi and xsd used above are as defined in [8].

The methods used in this specification also make use of structures and arrays (in some cases containing
mixed types). Array elements are indicated with square brackets after the data type. If specified, the
maximum length of the array would be indicated within the brackets. If the maximum length is not
specified, unless otherwise indicated, there is no fixed requirement on the number of elements the recipient
will be able to accommodate. A request with an array too large for the recipient to accommodate SHOULD
result in the “Resources exceeded” fault code. Unless otherwise specified, the order of items in an array
MUST NOT have any effect on the interpretation of the contents of the array.

Other Requirements

All methods MUST be called using the exact number of arguments specified in this document. Methods
called with either missing arguments or extra arguments MUST generate an error response. Argument
order MUST be as specified in this document.

Future versions of this specification MUST NOT redefine the RPC methods defined in this Annex. Any
changes needed in a future version MUST result only in new RPC methods with distinct names being
defined.

Baseline RPC Messages

Generic Methods

The methods listed in this section are REQUIRED to be supported on both CPE devices and ACSs. Either
a CPE or ACS MAY call these methods.

GetRPCMethods

This method MAY be used by a CPE or ACS to discover the set of methods supported by the ACS or CPE
it is in communication with. This list MUST include all the supported methods, both standard methods

December 2007 © The Broadband Forum. All rights reserved. 45

A.3.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

(those defined in this specification or a subsequent version) and vendor-specific methods. The receiver of
the response MUST ignore any unrecognized methods.

Vendor-specific methods MUST be in the form X_<VENDOR>_MethodName, where <VENDOR> is a
unique vendor identifier, which MAY be either an OUI or a domain name. The OUI or domain name used
for a given vendor-specific method MUST be one that is assigned to the organization that defined this
method (which is not necessarily the same as the vendor of the CPE or ACS). An OUl is an
organizationally unique identifier as defined in [9], which MUST formatted as a 6 hexadecimal-digit OUI
(organizationally unique identifier), with all upper-case letters and any leading zeros included. A domain
name MUST be upper case with each dot (“.”) replaced with a hyphen or underscore. Examples:
X_012345 MyMethod, X_ ACME_COM_MyMethod.

The calling arguments for this method are defined in Table 10. The arguments in the response are defined
in Table 11.

Table 10 — GetRPCMethods arguments

Argument Type Description

- void This method has no calling arguments.

Table 11 — GetRPCMethodsResponse arguments

Argument Type Description

MethodList | string(64)[] | Array of strings containing the names of each of the RPC methods the recipient supports.
The list of methods returned by an ACS MUST always include “Inform”.

For example, a CPE implementing only the baseline methods defined in this version of
the specification would return the following list when requested by an ACS:

"GetRPCMethods"
"SetParameterValues"
"GetParameterValues"
"GetParameterNames"
“SetParameterAttributes”
“GetParameterAttributes”
“AddObject”
“DeleteObject”

“Reboot”

“Download”

As another example, an ACS implementing only the baseline methods defined in this
version of the specification would return the following list when requested by a CPE:

“Inform”
"GetRPCMethods"

“TransferComplete”

The following fault codes are defined for this method for response from a CPE: 9001, 9002.
The following fault codes are defined for this method for response from an ACS: 8001, 8002, 8005.

CPE Methods

The methods listed in this section are defined to be supported on a CPE device. Only an ACS can call these
methods.

December 2007 © The Broadband Forum. All rights reserved. 46

A3.2.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

SetParameterValues

This method MAY be used by an ACS to modify the value of one or more CPE Parameters. The calling
arguments for this method are defined in Table 12. The arguments in the response are defined in Table 13.

Table 12 — SetParameterValues arguments

Argument Type Description

ParameterList | ParameterValueStruct]] | Array of name-value pairs as specified in Table 14. For each name-
value pair, the CPE is instructed to set the Parameter specified by the
name to the corresponding value.

This array MUST NOT contain more than one entry with the same
Parameter name. If a given Parameter appears in this array more than
once, the CPE MUST respond with fault 9003 (Invalid arguments).

If the length of this array is zero, then the CPE MUST set the
ParameterKey to the value specified by the ParameterKey argument,
but MUST NOT set any other parameter values.

ParameterKey string(32) The value to set the ParameterKey parameter. The CPE MUST set
ParameterKey to the value specified in this argument if and only if
SetParameterValues completes successfully and no fault response is
generated. If SetParameterValues does not complete successfully
(implying that the parameter value changes requested did not take
effect), the value of ParameterKey MUST NOT be modified.
ParameterKey provides the ACS a reliable and extensible means to
track changes made by the ACS. The value of this argument is left to
the discretion of the ACS, and MAY be left empty.

Table 13 — SetParameterValuesResponse arguments

Argument | Type | Description

Status int[0:1] | A successful response to this method returns an integer enumeration defined as follows:
0 = All Parameter changes have been validated and applied.

1 = All Parameter changes have been validated and committed, but some or all are not yet
applied (for example, if a reboot is required before the new values are applied).

On successful receipt of a SetParameterValues RPC, the CPE MUST apply the changes to all of the
specified Parameters atomically. That is, either all of the value changes are applied together, or none of the
changes are applied at all. In the latter case, the CPE MUST return a fault response indicating the reason
for the failure to apply the changes. The CPE MUST NOT apply any of the specified changes without
applying all of them. This requirement MUST hold even if the CPE experiences a crash during the process
of applying the changes. The order of Parameters listed in the ParameterList has no significance—the
application of value changes to the CPE MUST be independent from the order in which they are listed.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the requested changes prior to
sending the SetParameterValues response. If it does so, the CPE MUST set the value of Status in the
response to 0 (zero), indicating that the changes have been applied.

If the CPE requires the session to be terminated before applying some or all of the Parameter values, the
CPE MUST reply before all Parameter values have been applied, and thus MUST set the value of Status in
the response to 1. In this case, the reply MUST come only after all validation of the request has been
completed and the new values have been appropriately saved such that they will definitely be applied as
soon as physically possible after the session has terminated. Once the CPE issues the SetParameterVValues
response, all changes associated with the corresponding request (including the new ParameterKey) MUST
be available for subsequent commands to operate on, regardless of whether the changes have been applied
or not. In particular, the use of GetParameterValues to read a parameter modified by an earlier
SetParameterValues MUST return the modified value, even if that value has not yet been applied.

If the value of Status in the SetParameterValues response is 1, the requested changes MUST be applied as
soon as physically possible after the session has terminated, and no later than the beginning of the next
session. Note that if a CPE requires a reboot to cause the changes to be applied, the CPE MUST initiate

December 2007 © The Broadband Forum. All rights reserved. 47

A.3.2.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

that reboot on its own after the termination of the session. Because some CPE will not require a reboot in
these circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying the CPE’s
configuration, since this would result in an unnecessary reboot. Note also that if application of a
configuration change by the CPE would result in a service disruption (for example, if the CPE requires a
reboot to apply the requested change), it is not the responsibility of the CPE to avoid or delay such a
disruption. To minimize the impact of such a disruption, the ACS MAY delay requesting such a
configuration change until an appropriate time, but this is entirely at the ACS’s discretion.

The use of the Status value is independent between successive SetParameterValues, AddObject, or
DeleteObject requests within the same session. The use of a Status value of 1 in response to one request
does not necessarily imply that subsequent requests in the same session will also respond in the same way.

The ACS MAY set parameter values in any combination or order of its choosing using one or multiple
SetParameterValues RPCs.

All modifications to a CPE’s configuration resulting from use of the SetParameterValues method MUST be
retained across reboots of the CPE.

The ParameterValueStruct structure is defined in Table 14.

Table 14 — ParameterValueStruct definition

Name Type Description

Name string(256) This is the name of a Parameter. The CPE MUST treat
the parameter name as case sensitive.

Value anySimpleType This is the value the Parameter is to be set.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005, 9006, 9007, 9008.

If there is a fault due to one or more parameters in error, the fault response for this method MUST include a
SetParameterValuesFault element for each parameter in error. In this case, the primary fault code indicated
for the overall fault response MUST be Invalid Arguments (9003).

The CPE MUST reject an attempt to set values using the SetParameterValues RPC that would result in an
invalid configuration, where an invalid configuration is defined as one of the following:

e A parameter value or combination of parameter values that are explicitly prohibited in the definition of
the data model(s) supported by the CPE.

e A parameter value or combination of parameter values that are not supported by the CPE and are not
required by the data model(s) or profiles (as defined in [13]) supported by the CPE.

In both of the above cases, the response from the CPE MUST include a SetParameterVValuesFault element
for each such parameter, indicating the Invalid Parameter Value fault code (9007).

The CPE MUST NOT impose any additional configuration restrictions beyond the exceptions described
above and restrictions otherwise explicitly permitted or required by the CPE WAN Management Protocol.

GetParameterValues

This method MAY be used by an ACS to obtain the value of one or more CPE Parameters. The calling
arguments for this method are defined in Table 15. The arguments in the response are defined in Table 16.

December 2007 © The Broadband Forum. All rights reserved. 48

A.3.2.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 15 — GetParameterValues arguments

Argument Type Description

ParameterNames | string(256)[] | Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a partial path name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A partial path
name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber
Below is an example of a partial path name:

InternetGatewayDevice.Devicelnfo.

Table 16 — GetParameterValuesResponse arguments

Argument Type Description

ParameterList | ParameterValueStruct]] | Array of name-value pairs, as specified in Table 14, containing the
name and value for each requested Parameter.

If multiple entries in the ParameterNames array in the
GetParameterValues request overlap such that there are multiple
requests for the same Parameter value, it is at the discretion of the CPE
whether or not to duplicate that Parameter in the response array. That
is, the CPE MAY either include that Parameter value only once in its
response, or it MAY include that Parameter value once for each

instance that it was requested.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If the fault is caused by one or more invalid parameter names in the ParameterNames array, the Invalid
Parameter Name fault code (9005) MUST be used instead of the more general Invalid Arguments fault
code (9003). The value of a ParameterNames element MUST be considered invalid if it does not exactly
match either the name of a parameter currently present in the CPE’s data model (if the ParameterNames
element does not end with a dot) or the name of an object currently present in the CPE’s data model (if
ParameterNames element ends with a dot).

GetParameterNames

This method MAY be used by an ACS to discover the Parameters accessible on a particular CPE. The
calling arguments for this method are defined in Table 17. The arguments in the response are defined in
Table 18.

Table 17 — GetParameterNames arguments

Argument Type Description

ParameterPath | string(256) | A string containing either a complete Parameter name, or a partial path name
representing a subset of the name hierarchy. An empty string indicates the top of
the name hierarchy. A partial path name MUST end with a “.” (dot) after the last
node name in the hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber
Below is an example of a partial path name:

InternetGatewayDevice.Devicelnfo.

December 2007 © The Broadband Forum. All rights reserved. 49

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Argument Type Description

NextLevel boolean If false, the response MUST contain the Parameter or object whose name exactly
matches the ParameterPath argument, plus all Parameters and objects that are
descendents of the object given by the ParameterPath argument, if any (all levels
below the specified object in the object hierarchy). For example, if ParameterPath
were “InternetGatewayDevice.LANDevice.1.Hosts.”, the response would include the
following (if there were a single instance of Host with instance number “1”):

InternetGatewayDevice.LANDevice.1.Hosts.
InternetGatewayDevice.LANDevice.1.Hosts.HostNumberOfEntries
InternetGatewayDevice.LANDevice.1.Hosts.Host.
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.IPAddress
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.AddressSource
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.LeaseTimeRemaining
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.MACAddress
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.HostName
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.Interface Type
InternetGatewayDevice.LANDevice.1l.Hosts.Host.1.Active

If true, the response MUST contain all Parameters and objects that are next-level
children of the object given by the ParameterPath argument, if any. For example, if
ParameterPath were “InternetGatewayDevice.LANDevice.1.Hosts.”, the response
would include the following:

InternetGatewayDevice.LANDevice.1.Hosts.HostNumberOfEntries
InternetGatewayDevice.LANDevice.1.Hosts.Host.

Or, if ParameterPath were empty, with NextLevel equal true, the response would list
only “InternetGatewayDevice.” (if the CPE is an Internet Gateway Device).

Table 18 — GetParameterNamesResponse arguments

Argument Type Description

ParameterList | ParameterinfoStruct] | Array of structures, each containing the name and other information for a
Parameter or object, as defined in Table 19.

When NextLevel is false, this list MUST contain the Parameter or object
whose name exactly matches the ParameterPath argument, plus all
Parameters and objects that are descendents of the object given by the
ParameterPath argument, if any (all levels below the specified object in
the object hierarchy). If the ParameterPath argument is an empty
string, names of all objects and Parameters accessible on the particular
CPE are returned.

When NextLevel is true, this list MUST contain all Parameters and object
that are next-level children of the object given by the ParameterPath
argument, if any.

For a Parameter, the Name returned in this structure MUST be a full path
name, ending with the name of the Parameter element. For an object, the
Name returned in this structure MUST be a partial path, ending with a dot.

This list MUST include any objects that are currently empty. An empty
object is one that contains no instances (for a multi-instance object), no
child objects, and no child Parameters.

If NextLevel is true and ParameterPath refers to an object that is empty,
this array MUST contain zero entries.

The ParameterList MUST include only Parameters and objects that are
actually implemented by the CPE. If a Parameter is listed, this implies
that a GetParameterValues for this Parameter would be expected to
succeed.

Table 19 — ParameterInfoStruct definition

Name Type Description

Name string(256) This is the full path name of a Parameter or a partial path.

December 2007 © The Broadband Forum. All rights reserved. 50

A3.24

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Name

Type

Description

Writable

boolean

Whether or not the Parameter value can be overwritten
using the SetParameterValues method.

If Name is a partial path that refers to an object, this
indicates whether or not AddObject can be used to add
new instances of this object.

If Name is a partial path that refers to a particular instance
of a multi-instance object, this indicates whether or not
DeleteObject can be used to remove this particular
instance.

This element MUST be true only if the corresponding
Parameter or object as implemented in this CPE is writable
as described above. The value of this element MUST
reflect only the actual implementation rather than whether
or not the specification of the Parameter or object allows it
to be writable.

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

If the fault is caused by an invalid ParameterPath value, the Invalid Parameter Name fault code (9005)
MUST be used instead of the more general Invalid Arguments fault code (9003). A ParameterPath value
MUST be considered invalid if it is not an empty string and does not exactly match a parameter or object
name currently present in the CPE’s data model. If NextLevel is true and ParameterPath is a Parameter
name rather than a partial path, the CPE MUST return a fault response with the Invalid Arguments fault

code (9003).

SetParameterAttributes

This method MAY be used by an ACS to modify attributes associated with one or more CPE Parameter.
The calling arguments for this method are defined in Table 20. The arguments in the response are defined

in Table 21.

On successful receipt of a SetParameterAttributes RPC, the CPE MUST apply the changes to all of the
specified Parameters immediately and atomically. That is, either all of the attribute changes are applied
together, or none of the changes are applied at all. In the latter case, the CPE MUST return a fault response
indicating the reason for the failure to apply the changes. The CPE MUST NOT apply any of the specified
changes without applying all of them. This requirement MUST hold even if the CPE experiences a crash

during the process of applying the changes.

The ACS MAY set parameter attributes in any combination or order of its choosing using one or multiple

SetParameterAttributes RPCs.

If there is more than one entry in the ParameterList array, and the SetParameterAttributes request is
successful as described above, the CPE MUST apply the attribute changes in the order of the ParameterList
array. That is, if multiple entries in the ParameterList would result in modifying the same attribute of a
given parameter, the attribute value specified later in the ParameterList array MUST overwrite the attribute
value specified earlier in the array. This behavior might seem to be inconsistent with that of
SetParameterValues, for which it is an error to specify the same parameter name more than once; this
difference is because, unlike SetParameterValues, SetParameterAttributes permits a mixture of full and

partial paths to be specified.

All modifications to a CPE’s configuration resulting from use of the SetParameterAttributes method MUST

be retained across reboots of the CPE.

A CPE MUST NOT allow any entity other than the ACS to modify attributes of a parameter.

December 2007

© The Broadband Forum. All rights reserved. 51

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Table 20 — SetParameterAttributes arguments

Argument

Type

Description

ParameterList

SetParameterAttributesStruct[]

List of changes to be made to the attributes for a set of
Parameters. Each entry in this array is a SetParameter-
AttributesStruct as defined in Table 22.

As described above, the order of entries in this array is
significant.

Table 21 — SetParameterAttributesResponse arguments

Argument

Type Description

void This method response has no arguments.

Table 22 — SetParameterAttributesStruct definition

Name

Type

Description

Name

string(256)

This is the name of a Parameter to apply the new
attributes. Alternatively, this MAY be a partial path
name, indicating that the new attributes are to be
applied to all Parameters below this point in the
naming hierarchy. For such Parameters within multi-
instance objects where the instance number is below
the specified point in the naming hierarchy, the
specified attribute values MUST only be applied within
instances that exist at the time this method is invoked.
A partial path name MUST end with a “.” (dot) after
the last node name in the hierarchy. An empty string
indicates the top of the name hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber

Below is an example of a partial path name:
InternetGatewayDevice.Devicelnfo.

NotificationChange | boolean

If true, the value of Notification replaces the current
notification setting for this parameter or group of
parameters. If false, no change is made to the
notification setting.

Notification

int[0:2]

Indicates whether the CPE will include changed
values of the specified parameter(s) in the Inform
message, and whether the CPE will initiate a session
to the ACS when the specified parameter(s) change in
value. The following values are defined:

0 = Notification off. The CPE need not inform the
ACS of a change to the specified parameter(s).

1 = Passive notification. Whenever the specified
parameter value changes, the CPE MUST
include the new value in the ParameterList in the
Inform message that is sent the next time a
session is established to the ACS.

If the CPE has rebooted, or the URL of the ACS
has changed since the last session, the CPE
MAY choose not to include the list of changed
parameters in the first session established with
the new ACS.

2 = Active notification. Whenever the specified
parameter value changes, the CPE MUST initiate
a session to the ACS, and include the new value
in the ParameterList in the associated Inform
message.

For parameters defined in the corresponding data

December 2007

© The Broadband Forum. All rights reserved. 52

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Name Type Description

model as requiring Forced Active Notification, the
value of the Notification attribute is irrelevant and an
attempt to set it to a value other than 2 will be ignored.

Whenever a parameter change is sent in the Inform

message due to a non-zero Notification setting, the

Event code "4 VALUE CHANGE" MUST be included
in the list of Events.

Note that if the CPE deletes an object containing
parameters for which Notification is enabled (active or
passive), this MUST NOT be considered a value-
change for the purpose of Notification.

By default, prior to any changes to this attribute by an
ACS, its value SHOULD be 0 (Notification off) unless
otherwise specified in the appropriate data model
definition.

The CPE MAY provide no support for Active
Notification on a parameter deemed inappropriate for
Active Notification. A parameter is deemed
inappropriate for Active Notification if and only if that
parameter is explicitly defined as such in the definition
of the corresponding data model. Parameters that
might be deemed inappropriate for Active Notification
include parameters that change frequently, such as
statistics. A CPE MUST accept a request to enable
Passive Notification for any parameter.

Note that if a CPE implementation does not allow a
particular parameter value to change in a manner that
would result in a Notification (e.g., a capability flag
that could only change as a result of a firmware
update that requires a reboot, or a writeable
parameter that can only be modified via the CPE
WAN Management Protocol), then support for
Notification for this parameter involves no more than
keeping track of the value of its Notification attribute.
For such a parameter, the CPE implementation need
not incorporate a mechanism to detect value changes
nor to initiate Notifications based on such changes.

AccessListChange boolean If true, the value of AccessList replaces the current
access list for this parameter or group of parameters.
If false, no change is made to the access list.

December 2007 © The Broadband Forum. All rights reserved. 53

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Name Type Description

AccessList string(64)(] Array of zero or more entities for which write access

to the specified Parameter(s) is granted. If there are
no entries, write access is only allowed from an ACS.
At present, only one type of entity is defined that can
be included in this list:

“Subscriber” Indicates write access by an
interface controlled on the
subscriber LAN. Includes any
and all such LAN-side
mechanisms, which MAY include
but are not limited to TR-064
(LAN-side DSL CPE
Configuration Protocol), UPnP,
the device’s user interface, client-
side telnet, and client-side
SNMP.

Currently, access restrictions for other WAN-side
configuration protocols is not specified.

The ACS MAY further specify management entities in
the ACL using a vendor-specific prefix. If such
entities are specified by vendors, they MUST be
preceded by X_<VENDOR>_and follow the syntax for
vendor extensions for parameter names defined in
[13].

The CPE MUST correctly interpret the value
“Subscriber” as described above, but MUST ignore
any other individual values in this array that it does
not understand.

By default, prior to any changes to the access list by
an ACS, access SHOULD be granted to all entities
specified above.

The TR-069 ACS always has write access to all
writeable parameters regardless of being on the
access list. Other entities have write access only if
they appear on the access list. An entity that is
restricted from write access to a certain parameter
MUST NOT be allowed to change parameter values
and MUST NOT be allowed to delete objects within
which the parameter is contained. The TR-069
access control mechanism does not prevent any
entity from creating new object instances.

The CPE MUST accept changes to the AccessList for
any Parameter even if that Parameter is read-only
and its value cannot be modified by any management
entity. For such read-only Parameters, the CPE
MUST store the modified AccessList value and return
it when requested via GetParameterAttributes, but
MAY otherwise ignore this value.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005, 9009.

If the fault is caused by an invalid parameter name, the Invalid Parameter Name fault code (9005) MUST
be used instead of the more general Invalid Arguments fault code (9003). If the CPE does not support
Active Notifications on a parameter deemed inappropriate (as described above), it MUST reject an attempt
to enable Active Notification for that parameter by responding with fault 9009 (Notification request
rejected). If Active notification is being enabled for parameter(s) specified via a partial path and the CPE
does not support Active notification for one or more such parameters deemed inappropriate below this
point in the naming hierarchy, the CPE MUST reject the request and respond with fault code 9009
(Notification request rejected).

December 2007 © The Broadband Forum. All rights reserved. 54

CPE WAN Management Protocol v1.1

A.3.2.5 GetParameterAttributes

This method MAY be used by an ACS to read the attributes associated with one or more CPE Parameter.
The calling arguments for this method are defined in Table 23. The arguments in the response are defined

in Table 24.

TR-069 Issue 1 Amendment 2

Table 23 — GetParameterAttributes arguments

Argument

Type

Description

ParameterNames

string(

256)[]

Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a partial path name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A partial path
name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber

Below is an example of a partial path name:
InternetGatewayDevice.Devicelnfo.

Table 24 — GetParameterAttributesResponse arguments

Argument

Type

Description

ParameterList

ParameterAttributeStruct[] | List of access control information for the specified set of Parameters.

Each entry in this array is a ParameterAttributeStruct as defined in
Table 25.

If the ParameterNames argument in the request was a partial path,
and if there are no Parameters within the object represented by that
partial path (at any level below), the ParameterList MUST be empty,
and this MUST NOT cause an error response.

Table 25 — ParameterAttributeStruct definition

Name Type Description
Name string(256) This is the name of a Parameter to which the
attributes are given. The Name MUST be a full

Parameter name, and MUST NOT be a partial path.

Notification int[0:2] Indicates whether the CPE will include changed
values of the specified parameter(s) in the Inform

message, and whether the CPE will initiate a

session to the ACS when the specified parameter(s)

change in value. The following values are defined:

0 = Notification off. The CPE need not inform the
ACS of a change to the specified parameter(s).

1 = Passive notification. Whenever the specified
parameter value changes, the CPE MUST
include the new value in the ParameterList in
the Inform message that is sent the next time a
session is established to the ACS.

2 = Active notification. Whenever the specified
parameter value changes, the CPE MUST
initiate a session to the ACS, and include the
new value in the ParameterList in the
associated Inform message.

December 2007 © The Broadband Forum. All rights reserved. 55

A.3.2.6

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Name Type Description

AccessList string(64)[] Array of zero or more entities for which write access
to the specified Parameter(s) is granted. If there
are no entries, write access is only allowed from an
ACS. At present, only one type of entity is defined
that can be included in this list:

“Subscriber” Indicates write access by an
interface controlled on the
subscriber LAN. Includes any
and all such LAN-side
mechanisms, which MAY
include but are not limited to
TR-064 (LAN-side DSL CPE
Configuration Protocol), UPnP,
the device’s user interface,
client-side telnet, and client-
side SNMP.

The list MAY include vendor-specific entities, which
MUST be preceded by X_<VENDOR>_and follow
the syntax for vendor extensions for parameter
names defined in [13].

The ACS MAY ignore any individual items in this
array that it does not understand.

By default, prior to any changes to the access list by
an ACS, the AccessList attribute for all parameters
SHOULD include all entities that the CPE supports,
indicating access granted to all of these entities.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If the fault is caused by an invalid parameter name, the Invalid Parameter Name fault code (9005) MUST
be used instead of the more general Invalid Arguments fault code (9003).

AddObject

This method MAY be used by the ACS to create a new instance of a multi-instance object—a collection of
Parameters and/or other objects for which multiple instances are defined. The method call takes as an
argument the path name of the collection of objects for which a new instance is to be created. For example:

Top-Group.Object.

This path name does not include an instance number for the object to be created. That instance number is
assigned by the CPE and returned in the response. Once assigned the instance number of an object cannot
be changed and persists until the object is deleted using the DeleteObject method. After creation,
Parameters or sub-objects within the object are referenced by the path name appended with the instance
number. For example, if the AddObject method returned an instance number of 2, a Parameter within this
instance can then be referred to by the path:

Top-Group.Object.2_Parameter

On creation of an object using this method, the Parameters contained within the object MUST be set to
their default values and the associated attributes MUST be set to the following:

e Notification is set to zero (notification off) unless otherwise specified in the appropriate data
model definition

e AccessList includes all defined entities

The calling arguments for this method are defined in Table 26. The arguments in the response are defined
in Table 27.

Addition of an object MUST be done atomically. That is, either all of the Parameters and sub-objects are
added together, or none are added. In the latter case the CPE MUST return a fault response indicating the

December 2007 © The Broadband Forum. All rights reserved. 56

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

reason for the failure to add the object. The CPE MUST NOT add any contained Parameters or sub-objects
as a result of this method call without adding all of them (all Parameters and sub-objects supported by that
CPE). This requirement MUST hold even if the CPE experiences a crash during the process of performing
the addition.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the object creation prior to
sending the AddObject response. If it does so, the CPE MUST set the value of Status in the response to 0
(zero), indicating that the object creation has been applied.

If the CPE requires the session to be terminated before applying the object creation, the CPE MUST reply
before the object creation has been applied, and thus MUST set the value of Status in the response to 1. In
this case, the reply MUST come only after all validation of the request has been completed and the object
creation request has been appropriately saved such that it will definitely be applied as soon as physically
possible after the session has terminated. Once the CPE issues the AddObject response, all changes
associated with the corresponding request (including the new ParameterKey) MUST be available for
subsequent commands to operate on, regardless of whether the changes have been applied or not. In
particular, even if the object creation has not yet been applied, the CPE MUST allow the use of
SetParameterValues, GetParameterVValues, SetParameterAttributes, and GetParameterAttributes to operate
on parameters within the newly created object, as well as the use of AddObiject to create a sub-object within
the newly created object, and DeleteObject to delete either a sub-object or the newly created object itself.

If the value of Status in the AddObject response is 1, the requested object creation MUST be applied as
soon as physically possible after the session has terminated, and no later than the beginning of the next
session. Note that if a CPE requires a reboot to cause the object creation to be applied, the CPE MUST
initiate that reboot on its own after the termination of the session. Because some CPE will not require a
reboot in these circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying the
CPE’s configuration, since this would result in an unnecessary reboot. Note also that if application of a
configuration change by the CPE would result in a service disruption (for example, if the CPE requires a
reboot to apply the requested change), it is not the responsibility of the CPE to avoid or delay such a
disruption. To minimize the impact of such a disruption, the ACS MAY delay requesting such a
configuration change until an appropriate time, but this is entirely at the ACS’s discretion.

The use of the Status value is independent between successive SetParameterValues, AddObject, or
DeleteObject requests within the same session. The use of a Status value of 1 in response to one request
does not necessarily imply that subsequent requests in the same session will also respond in the same way.

All modifications to a CPE’s configuration resulting from use of the AddObject method MUST be retained
across reboots of the CPE. This MUST include the values of object instance numbers.

Table 26 — AddObject arguments

Argument Type Description

ObjectName string(256) | The path name of the collection of objects for which a new instance is to be created.
The path name MUST end with a “.” (dot) after the last node in the hierarchical name
of the object.

ParameterKey | string(32) The value to set the ParameterKey parameter. The CPE MUST set ParameterKey to
the value specified in this argument if and only if AddObject completes successfully
and no fault response is generated. If AddObject does not complete successfully
(implying that the requested object did not get added), the value of ParameterKey
MUST NOT be modified. ParameterKey provides the ACS a reliable and extensible
means to track changes made by the ACS. The value of this argument is left to the
discretion of the ACS, and MAY be left empty.

December 2007 © The Broadband Forum. All rights reserved. 57

A3.2.7

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 27 — AddObjectResponse arguments

Argument Type Description

InstanceNumber | Unsignedint[1:] | The instance number of the newly created object. Once created, a Parameter
or sub-object within this object can be later referenced by using this instance
number in the path name. The instance number assigned by the CPE is
arbitrary and instance numbers assigned by sequential calls to AddObject
need not be consecutive.

The CPE SHOULD NOT assign an instance number that has been used for a
previously deleted object instance. The CPE SHOULD exhaust the full space
of integer values for a given object before re-using instance numbers.

Once an object instance is created, the assigned instance number MUST
persist unchanged until the object is subsequently deleted (either by the ACS
or by a third party). This implies that the instance number MUST persist
across reboots of the CPE, and that the CPE MUST NOT allow the instance
number of an existing object instance to be modified by a third-party entity.

Status int[0:1] A successful response to this method returns an integer enumeration defined
as follows:

0 = The object has been created.

1 = The object creation has been validated and committed, but not yet applied
(for example, if a reboot is required before the new object can be applied).

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If an AddObject request would result in exceeding the maximum number of such objects supported by the
CPE, the CPE MUST return a fault response with the Resources Exceeded (9004) fault code.

DeleteObject

This method is used to remove a particular instance of an object. This method call takes as an argument the
path name of the object instance including the instance number. For example:

Top-Group.Object.2.

If this method call is successful, the specified instance of this object is subsequently unavailable for access
and the CPE MUST discard the state previously associated with all Parameters (values and attributes) and
sub-objects contained within this instance.

When an object instance is deleted, the instance numbers associated with any other instances of the same
collection of objects remain unchanged. Thus, the instance numbers of object instances in a collection
might not be consecutive.

The calling arguments for this method are defined in Table 28. The arguments in the response are defined
in Table 29.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the object deletion prior to
sending the DeleteObject response. If it does so, the CPE MUST set the value of Status in the response to 0
(zero), indicating that the object deletion has been applied.

If the CPE requires the session to be terminated before applying the object deletion, the CPE MUST reply
before the object deletion has been applied, and thus MUST set the value of Status in the response to 1. In
this case, the reply MUST come only after all validation of the request has been completed and the object
deletion request has been appropriately saved such that it will definitely be applied as soon as physically
possible after the session has terminated. Once the CPE issues the DeleteObject response, all changes
associated with the corresponding request (including the new ParameterKey) MUST be available for
subsequent commands to operate on, regardless of whether the changes have been applied or not. In
particular, the use of GetParameterNames and GetParameterVValues MUST indicate the absence of the
deleted object, and any attempt to modify or read parameters or sub-objects within the deleted object
MUST fail.

December 2007 © The Broadband Forum. All rights reserved. 58

A.3.2.8

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

If the value of Status in the DeleteObject response is 1, the requested object deletion MUST be applied as
soon as physically possible after the session has terminated, and no later than the beginning of the next
session. Note that if a CPE requires a reboot to cause the object deletion to be applied, the CPE MUST
initiate that reboot on its own after the termination of the session. Because some CPE will not require a
reboot in these circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying the
CPE’s configuration, since this would result in an unnecessary reboot. Note also that if application of a
configuration change by the CPE would result in a service disruption (for example, if the CPE requires a
reboot to apply the requested change), it is not the responsibility of the CPE to avoid or delay such a
disruption. To minimize the impact of such a disruption, the ACS MAY delay requesting such a
configuration change until an appropriate time, but this is entirely at the ACS’s discretion.

The use of the Status value is independent between successive SetParameterValues, AddObject, or
DeleteObject requests within the same session. The use of a Status value of 1 in response to one request
does not necessarily imply that subsequent requests in the same session will also respond in the same way.

On deletion, all Parameters and sub-objects contained within this object MUST be removed atomically.
That is, either all of the Parameters and sub-objects are removed together, or none are removed at all. In
the latter case, the CPE MUST return a fault response indicating the reason for the failure to delete the
object. The CPE MUST NOT remove any contained Parameters or sub-objects as a result of this method
call without removing all of them. This requirement MUST hold even if the CPE experiences a crash
during the process of performing the deletion.

All madifications to a CPE’s configuration resulting from use of the DeleteObject method MUST be
retained across reboots of the CPE.

Table 28 — DeleteObject arguments

Argument Type Description

ObjectName string(256) | The path name of the object instance to be removed. The path name MUST end with
a “.” (dot) after the instance number of the object.

ParameterKey | string(32) The value to set the ParameterKey parameter. The CPE MUST set ParameterKey to
the value specified in this argument if and only if DeleteObject completes successfully
and no fault response is generated. If DeleteObject does not complete successfully
(implying that the requested object did not get deleted), the value of ParameterKey
MUST NOT be modified. ParameterKey provides the ACS a reliable and extensible
means to track changes made by the ACS. The value of this argument is left to the
discretion of the ACS, and MAY be left empty.

Table 29 — DeleteObjectResponse arguments

Argument | Type | Description

Status int[0:1] | A successful response to this method returns an integer enumeration defined as follows:
0 = The object has been deleted.

1 = The object deletion has been validated and committed, but not yet applied (for example, if a
reboot is required before the object can be deleted).

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

If the fault is caused by an invalid ObjectName value, the Invalid Parameter Name fault code (9005) MUST
be used instead of the more general Invalid Arguments fault code (9003). The ObjectName value MUST
be considered invalid if it does not exactly match the name of a single instance of a multi-instance object
currently present in the CPE’s data model.

Download

This method MAY be used by the ACS to cause the CPE to download a specified file from the designated
location. The calling arguments for this method are defined in Table 30. The arguments in the response
are defined in Table 31.

December 2007 © The Broadband Forum. All rights reserved. 59

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

When a download is initiated using this method, the CPE MUST indicate successful or unsuccessful
completion of the download using one of the following three means:

e A DownloadResponse with the Status argument having a value of zero (indicating success), or a fault
response to the Download request (indicating failure).

e A TransferComplete message sent later in the same session as the Download request (indicating either
success or failure). In this case, the Status argument in the corresponding DownloadResponse MUST
have a value of one.

e A TransferComplete message sent in a subsequent session (indicating either success or failure). In this
case, the Status argument in the corresponding DownloadResponse MUST have a value of one.

Regardless of which means is used, the CPE MUST only indicate successful completion of the download
after the downloaded file has been both successfully transferred and applied. While the criterion used to
determine when a file has been successfully applied is specific to the CPE’s implementation, the CPE
SHOULD consider a downloaded file to be successfully applied only after the file is installed and in use as
intended.

In the particular case that the downloaded file is a software image, the CPE MUST consider the
downloaded file to be successfully applied only after the new software image is actually installed and
operational. If the software image replaces the overall software of the CPE (which would typically require
a reboot to install and begin execution), the SoftwareVersion represented in the data model MUST already
reflect the updated software image in the session in which the CPE sends a TransferComplete indicating
successful download.

If the CPE requires a reboot to apply the downloaded file, then the only appropriate means of indicating
successful completion is the third option listed above—a TransferComplete message sent in a subsequent
session.

If the file cannot be successfully downloaded or applied, the CPE MUST NOT attempt to retry the file
download on its own initiative, but instead MUST report the failure of the download to the ACS using any
of the three means listed above. Upon the ACS being informed of the failure of a download, the ACS
MAY subsequently attempt to reinitiate the download by issuing a new Download request.

If the CPE receives one or more Download requests before performing a previously requested download,
the CPE MUST queue all requested downloads and perform each of them as closely as possible to the
requested time (based on the value of the DelaySeconds argument and the time of the request). Queued
downloads MUST be retained across reboots of the CPE. The CPE MUST be able to queue a minimum of
three file transfers (downloads and uploads).

For each download performed, the CPE MUST send a distinct TransferComplete. Note that the order in
which a series of requested downloads will be performed might differ from the order of the corresponding
requests due to differing values of DelaySeconds. For example, an ACS could request a download with
DelaySeconds equal to one hour, then five minutes later request a second download with DelaySeconds
equal to one minute. In this case, the CPE would perform the second download before the first.

All modifications to a CPE’s configuration resulting from use of the Download method MUST be retained
across reboots of the CPE.

Table 30 — Download arguments

Argument Type Description

CommandKey string(32) The string the CPE uses to refer to a particular download. This argument is
referenced in the methods Inform, TransferComplete and GetQueuedTransfers.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

December 2007 © The Broadband Forum. All rights reserved. 60

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Argument

Type

Description

FileType

string(64)

An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image"
"2 Web Content"
“3 Vendor Configuration File”

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <OUI> <Vendor-specific identifier>"

<OUI> is replaced by a 6 hexadecimal-digit OUI (organizationally unique identifier)
as defined in [9], with all upper-case letters and any leading zeros included. The
OUI used for a given vendor-specific file type MUST be one that is assigned to the
organization that defined this file type (which is not necessarily the same as the
vendor of the CPE or ACS).

If and only if the CPE supports downloading of firmware images using the
Download method, the CPE MUST support the "1 Firmware Upgrade Image"
FileType value. All other FileType values are OPTIONAL.

The FileType value of "2 Web Content" is intended to be used for downloading
files that contain only web content for a CPE'’s web-based user interface. A CPE
that supports a web-based user interface and allows the content to be downloaded
from the ACS via the Download method as a distinct file containing only web
content SHOULD use the FileType value of "2 Web Content" when performing
such a download. A CPE that supports a web-based user interface and allows the
content to be downloaded from the ACS MAY instead include web content as part
of its firmware upgrade image, or use some other means to update the web
content in the CPE. Such a CPE need not support the FileType value of "2 Web
Content".

URL

string(256)

URL, as defined in [12], specifying the source file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in section
2.3.2, MAY be supported.

If the CPE receives multiple Download requests with the same source URL, the
CPE MUST perform each download as requested, and MUST NOT assume that
the content of the file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username

string(256)

Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password

string(256)

Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

FileSize

unsignedint

The size of the file to be downloaded in bytes.

The FileSize argument is intended as a hint to the CPE, which the CPE MAY use
to determine if it has sufficient space for the file to be downloaded, or to prepare
space to accept the file.

The ACS MAY set this value to zero. The CPE MUST interpret a zero value to
mean that that the ACS has provided no information about the file size. In this
case, the CPE MUST attempt to proceed with the download under the
presumption that sufficient space is available, though during the course of
download, the CPE might determine otherwise.

The ACS SHOULD set the value of this parameter to the exact size of the file to
be downloaded. If the value is non-zero, the CPE MAY reject the Download
request on the basis of insufficient space.

If the CPE attempts to proceed with the download based on the value of this
argument, but the actual file size differs from the value of this argument, this could
result in a failure of the download. However, the CPE MUST NOT cause the
download to fail solely because it determines that the value of this argument is
inaccurate.

December 2007

© The Broadband Forum. All rights reserved. 61

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Argument

Type

Description

TargetFileName

string(256)

The name of the file to be used on the target file system. This argument MAY be
left empty if the target file name can be extracted from the downloaded file itself,
or from the URL argument, or if no target file name is needed. If this argument is
specified, but the target file name is also indicated by another source (for example,
if it is extracted from the downloaded file itself), this argument MUST be ignored.

If the target file name is used, the downloaded file would replace any existing file
of the same name (whether or not the CPE archives the replaced file is a local
matter).

If present, this parameter is treated as an opaque string with no specific
requirements for its format. That is, the TargetFileName value is to be interpreted
based on the CPE’s vendor-specific file naming conventions. Note that this
specification does not preclude the use of a file nhaming convention in which the
file's path can be specified as part of the file name.

DelaySeconds

unsignedint

This argument has different meanings for Unicast and Multicast downloads. For
Unicast downloads it is the number of seconds before the CPE will initiate the
download. For Multicast downloads the CPE will initiate the download
immediately and it is the number of seconds available for initiating, performing and
applying the download.

The following applies only to Unicast downloads, i.e. to downloads where the URL
specifies a Unicast download transport protocol.

The number of seconds from the time this method is called to the time the
CPE is requested to initiate the download. A value of zero indicates that no
delay is requested. If a non-zero delay is requested, the download MUST
NOT occur in the same transaction session in which the request was issued.

The CPE MUST perform and apply the download immediately after the time
indicated by DelaySeconds, unless this is not possible for reasons outside
the CPE’s control, in which case the CPE MUST attempt to perform and
apply the download within one hour after the time indicated by
DelaySeconds. If the CPE cannot begin the download within this time
window, the CPE MUST consider the download to have failed and report this
failure to the ACS using the TransferComplete method. If the download
completes before the end of this time window, the CPE MUST apply the
download prior to the end of this time window. If the download is still in
progress at the end of this time window, the CPE MUST apply the download
immediately upon completion of the download.

The following applies only to Multicast downloads, i.e. to downloads where the
URL specifies a Multicast download transport protocol:

The number of seconds from the time this method is called that are available
for the CPE to initiate, perform and apply the download. Multicast downloads
MUST NOT occur in the same transaction session in which the request was
issued.

The CPE MUST perform and apply the download immediately, unless this is
not possible for reasons outside the CPE’s control, in which case the CPE
MUST attempt to perform and apply the download within DelaySeconds of
the download request. If the CPE cannot complete the download within this
time window, the CPE MUST consider the download to have failed and report
this failure to the ACS using the TransferComplete method.

The following applies to both Unicast and Multicast downloads:

The CPE MUST attempt to perform the download within the time window
specified above even if the CPE reboots one or more times prior to that time.

SuccessURL

string(256)

When applicable, this argument contains the URL, as defined in [12], the CPE
SHOULD redirect the user’s browser to if the download completes successfully.
This URL MAY include CGI arguments (for example, to maintain session state).

This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.

When there is no need for such a URL, this argument SHOULD be empty.

December 2007

© The Broadband Forum. All rights reserved. 62

A.3.2.9

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Argument Type Description

FailureURL string(256) | When applicable, this argument contains the URL, as defined in [12], the CPE
SHOULD redirect the user’s browser to if the download does not complete
successfully. This URL MAY include CGI arguments (for example, to maintain

session state).

results.

When there is no need for such a URL, this argument SHOULD be empty.

This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download

Table 31 — DownloadResponse arguments

Argument Type Description
Status int[0:1] A successful response to this method returns an integer enumeration defined as
follows:

0 = Download has completed and been applied.

itself before it can apply the downloaded file).

If the value of this argument is non-zero, the CPE MUST subsequently call the
TransferComplete method to indicate the completion status of this download (either
successful or unsuccessful) either later in the same session or in a subsequent session.

1 = Download has not yet been completed and applied (for example, if the CPE needs
to reboot itself before it can perform the file download, or if the CPE needs to reboot

StartTime dateTime | The date and time download was started in UTC. This need only be filled in if the
download has been completed. Otherwise, the value MUST be set to the Unknown

Time value.

set to the Unknown Time value.

CompleteTime | dateTime | The date and time the download was fully completed and applied in UTC. This need
only be filled in if the download has been completed. Otherwise, the value MUST be

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004, 9010, 9012, 9013.

If an attempt is made to queue an additional download when the CPE’s file transfer queue is already full,
the CPE MUST respond with fault 9004 (Resources exceeded). If the CPE detects the presence of the

“userinfo” component in the file source URL, it SHOULD reject the Download request with the fault code
9003 (Invalid arguments). If the CPE rejects the Download request because the FileSize argument exceeds
the available space on the device, it MUST use the Download Failure (9010) fault code.

Reboot

This method causes the CPE to reboot, and calls for use of extreme caution. The CPE MUST send the
method response and complete the remainder of the session prior to rebooting. The calling arguments for
this method are defined in Table 32. The arguments in the response are defined in Table 33.

Note — Multiple invocations of this method within a single session MUST result in only a single
reboot. In this case the Inform following the reboot would be expected to contain a single “1

BOOT”” EventCode and an ““M Reboot™ EventCode for each method invocation.

This method is primarily intended for troubleshooting purposes. This method is not intended for use by an
ACS to initiate a reboot after modifying the CPE’s configuration (e.g., setting CPE parameters or initiating

a download). If a CPE requires a reboot after its configuration is modified, the CPE MUST initiate that

reboot on its own after the termination of the session. Because some CPE will not require a reboot in these

circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying the CPE’s

configuration, since this would result in an unnecessary reboot.

December 2007 © The Broadband Forum. All rights reserved.

63

A.3.3

A33.1

CPE WAN Management Protocol v1.1

Table 32 — Reboot arguments

TR-069 Issue 1 Amendment 2

Argument Type

Description

CommandKey | string(32)

The string to return in the CommandKey element of the InformStruct when the CPE
reboots and calls the Inform method.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be an
empty string.

Table 33 — RebootResponse arguments

Argument

Type

Description

void

This method response has no arguments.

The following fault codes are defined for this method: 9001, 9002, 9003.

ACS Methods

The methods listed in this section are defined to be supported on an ACS. Only a CPE can call these

methods.

Inform

A CPE MUST call the Inform method to initiate a transaction sequence whenever a session with an ACS
is established. The calling arguments for this method are defined in Table 34. The arguments in the
response are defined in Table 35.

Table 34 — Inform

arguments

Argument

Type

Value

Deviceld

DeviceldStruct

A structure that uniquely identifies the CPE, defined in Table 36.

Event

EventStruct[64]

An array of structures, as defined in Table 7 in section 3.7.1.5, indicating
the events that caused the transaction session to be established. If one
or more causes exist, the CPE MUST list all such causes. The ACS
MUST NOT place any significance on the order of events within this
array.

If a CPE needs to deliver more than 64 events in a single Inform (this
would be expected to occur only under exceptional circumstances and
on rare occasions), it MUST discard the oldest “M” (method-related)
events in order to avoid exceeding the maximum array size.

If the session was established solely because the previous session
terminated unsuccessfully, this array MUST NOT contain events that
have already been delivered (if all events have already been delivered
this array MUST be empty).

If further events occur while a previous failed session is being retried,
the new events MUST be incorporated into the retried session’s event
array.

If the CPE establishes a session for which none of the standard event
codes apply, then this array MAY be empty.

MaxEnvelopes

unsignedint

This argument MUST be set to a value of 1 because this version of the
protocol supports only a single envelope per message, and on reception
its value MUST be ignored.

CurrentTime

dateTime

The current date and time known to the CPE. This MUST be
represented in the local time zone of the CPE, and MUST include the
local time-zone offset from UTC (with appropriate adjustment for daylight
savings time). How the local time zone is determined by the CPE is
beyond the scope of this specification.

December 2007

© The Broadband Forum. All rights reserved. 64

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Argument Type Value

RetryCount unsignedint Number of prior times an attempt was made to retry this session.
This MUST be zero if and only if the previous session, if any, completed
successfully, i.e. it will be reset to zero only when a session completes
successfully.

ParameterList | ParameterValueStruct]] | Array of name-value pairs as specified in Table 14. This parameter

MUST contain the name-value for the following parameters:

« Every parameter for which the ACS has set the Notification attribute
to either Active Notification or Passive Notification whose value has
been modified by an entity other than the ACS since the last
successful Inform natification (including values modified by the CPE
itself).

o Every parameter defined in the corresponding data model as requiring
Forced Active Notification (regardless of the value of the Notification
attribute) for which the value has been modified by an entity other
than the ACS since the last successful Inform notification (including
values modified by the CPE itself).

o Every parameter defined in the corresponding data model as being
required in every Inform.

If a parameter has changed more than once since the last successful
Inform notification, the parameter MUST be listed only once, with only
the most recent value given. In this case, the parameter MUST be
included in the ParameterList even if its value has changed back to the
value it had at the time of the last successful Inform.

Whenever the CPE is re-booted, or if the ACS URL is modified, the CPE
MAY at that time clear its record of parameters pending notification due
to a value change (though, the CPE MUST retain the values of the
Notification attribute for all parameters). If the CPE clears its record of
parameters pending notification due to a value change, it MUST at the
same time discard the corresponding “4 VALUE CHANGE” event.

If the value of at least one parameter listed in the ParameterList has
been modified by an entity other than the ACS since the last successful
Inform notification to the same ACS, the Inform message MUST include
the EventCode “4 VALUE CHANGE". This includes value changes to
any of the parameters that are listed due to being required in every
Inform. Otherwise, the Inform message MUST NOT include the
EventCode “4 VALUE CHANGE”.

If the Inform message does include the “4 VALUE CHANGE" EventCode
then the ParameterList MUST include only those parameters that meet
one of the three criteria listed above. If the Inform message does not
include the “4 VALUE CHANGE” EventCode, the ParameterList MAY
include additional parameters at the discretion of the CPE.

Note that if the Inform message includes the “8 DIAGNOSTICS
COMPLETE" EventCode, the CPE is not required to include in the
ParameterList any parameters associated with results of the
corresponding diagnostic, and as described above, if the “4 VALUE
CHANGE” EventCode is also present in the Inform, the ParameterList
MUST include only those parameters that meet one of the three criteria
listed above.

Table 35 — InformResponse arguments

Argument Type Description
MaxEnvelopes | unsignedint | This argument MUST be set to a value of 1 because this version of the protocol
supports only a single envelope per message, and on reception its value MUST be
ignored.
December 2007 © The Broadband Forum. All rights reserved. 65

A.3.3.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 36 — DeviceldStruct definition

Name Type Description
Manufacturer string(64) Manufacturer of the device (for display only).
oul string(6) Organizationally unique identifier of the device manufacturer. Represented

as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [9].

ProductClass string(64) Identifier of the class of product for which the serial number applies. That is,
for a given manufacturer, this parameter is used to identify the product or
class of product over which the SerialNumber parameter is unique.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

Table 37 — EventStruct definition

Name Type Description

EventCode string(64) Each value consists of an identifying character followed by a text description
of the cause. See Table 7 in section 3.7.1.5 for event codes, handling rules,
and a syntax for specifying vendor-specific events.

The value of this parameter is case sensitive and MUST exactly match
either one of the values defined in Table 7 in section 3.7.1.5, or the vendor-
specific form also specified in that table.

CommandKey string(32) If the EventCode in this Event list entry corresponds to a cause in which a
CommandKey has been specified, this element MUST contain the value of
that CommandKey.

For this version of the specification, the following causes result in this
argument being set to the value of the CommandKey argument in the
originating method call:

e Scheduledinform method (EventCode = “M Schedulelnform”)
e Reboot method (EventCode = “M Reboot”)

* Download method (EventCode = “M Download”)

o Upload method (EventCode = “M Upload”)

For each of the above methods, the CommandKey value from the method
argument MUST appear in the Event array entry containing the EventCode
value shown above. For all other EventCode values defined in this
specification, the value of CommandKey MUST be an empty string.

The following fault codes are defined for this method: 8001, 8002, 8003, 8004, 8005.

An ACS that receives an Inform without a “0 BOOTSTRAP” EventCode from a CPE from which it has not
previously received an Inform with the “0 BOOTSTRAP” EventCode MAY, at its discretion, respond with
a fault code of 8003 (Invalid arguments).

TransferComplete

This method informs the ACS of the completion (either successful or unsuccessful) of a file transfer
initiated by an earlier Download or Upload method call. This MUST be called only when the associated
Download or Upload response indicated that the transfer had not yet completed at that time (indicated by a
non-zero value of the Status argument in the response). In such cases, it MAY be called either later in the
same session in which the transfer was initiated or in any subsequent session. Note that in order for it to be
called within the same session in which the transfer was initiated, the CPE will have been sent the
InformResponse and Download request while HoldRequests was true. When used, this method MUST be
called only after the transfer has successfully completed, and in the case of a download, the downloaded
file has been successfully applied, or after the transfer or apply has failed. If this method fails, the CPE
MUST NOT regard the ACS as having been informed of the completion of the file transfer, and MUST
attempt to call the method again, either in the current session or in a new session, subject to the event

December 2007 © The Broadband Forum. All rights reserved. 66

A.3.3.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

delivery rules of section 3.7.1.5. The calling arguments for this method are defined in Table 38. The
arguments in the response are defined in Table 39.

Table 38 — TransferComplete arguments

Argument Type Value

CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download or
Upload method call that initiated the transfer.

FaultStruct FaultStruct | A FaultStruct as defined in Table 40. If the transfer was successful, the FaultCode is
set to zero. Otherwise a non-zero FaultCode is specified along with a FaultString
indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not available, the
value of this argument MUST be set to the Unknown Time value.

CompleteTime | dateTime The date and time the transfer was fully completed and applied in UTC. The CPE
SHOULD record this information and report it in this argument, but if this information is
not available, the value of this argument MUST be set to the Unknown Time value.

Table 39 — TransferCompleteResponse arguments

Argument Type Value

- void This method response has no arguments.

Table 40 — FaultStruct definition

Name Type Value

FaultCode unsignedint | The numerical fault code as defined in section A.5.1. In the case of a fault, allowed
values are: 9001, 9002, 9010, 9011, 9012, 9014, 9015, 9016, 9017, 9018, 9019. A
value of 0 (zero) indicates no fault.

FaultString | string(256) | A human-readable text description of the fault. This field SHOULD be empty if the
FaultCode equals 0 (zero).

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004, 8005.

AutonomousTransferComplete

This method informs the ACS of the completion (either successful or unsuccessful) of a file transfer that
was not specifically requested by the ACS. When used, this method MUST be called only after the transfer
has successfully completed, and in the case of a download, the downloaded file has been successfully
applied, or after the transfer or apply has failed (e.g. a timeout expired). If this method fails, the CPE
MUST NOT regard the ACS as having been informed of the completion of the file transfer, and MUST
attempt to call the method again, either in the current session or in a new session, subject to the event
delivery rules of section 3.7.1.5. The calling arguments for this method are defined in Table 41. The
arguments in the response are defined in Table 42.

Table 41 — AutonomousTransferComplete arguments

Argument Type Value

AnnounceURL string(1024) | The URL on which the CPE listened to the announcements that led to this transfer
being performed, or an empty string if this transfer was not performed as a result
of an announcement, or if no such URL is available.

TransferURL string(1024) | The URL from or to which this transfer was performed, or an empty string if no
such URL is available.

IsDownload boolean Indicates whether the autonomous transfer was a download (true) or an upload
(false).

December 2007 © The Broadband Forum. All rights reserved. 67

A4

A4l

A411

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Argument Type Value

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image" (download only)

"2 Web Content" (download only)

“3 Vendor Configuration File” (download or upload)
“4 Vendor Log File” (upload only)

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <OUI> <Vendor-specific identifier>"

<OUlI> is replaced by a 6 hexadecimal-digit OUI (organizationally unique identifier)
as defined in [9], with all upper-case letters and any leading zeros included. The
OUI used for a given vendor-specific file type MUST be one that is assigned to the
organization that defined this file type (which is not necessarily the same as the
vendor of the CPE or ACS).

FileSize unsignedint | The size of the file in bytes, or zero if this information is not available or if the CPE
chooses not to make it available.

TargetFileName | string(256) The name of the file on the target (CPE) file system, or an empty string if this
information is not available or if the CPE chooses not to make it available.

FaultStruct FaultStruct A FaultStruct as defined in Table 40. If the transfer was successful, the FaultCode
is set to zero. Otherwise a non-zero FaultCode is specified along with a
FaultString indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not available,
the value of this argument MUST be set to the Unknown Time value.

CompleteTime dateTime The date and time the transfer was fully completed and applied in UTC. The CPE
SHOULD record this information and report it in this argument, but if this
information is not available, the value of this argument MUST be set to the
Unknown Time value.

Table 42 — AutonomousTransferCompleteResponse arguments

Argument Type Value

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004, 8005.

Optional RPC Messages

CPE Methods

The methods listed in this section MAY optionally be supported on a CPE device. Only an ACS can call
these methods.

GetQueuedTransfers
Note — this method is DEPRECATED in favor of GetAllQueuedTransfers [section A.4.1.7].

This method MAY be used by an ACS to determine the status of previously requested downloads or
uploads. The calling arguments for this method are defined in Table 43. The arguments in the response are
defined in Table 44.

December 2007 © The Broadband Forum. All rights reserved. 68

A4.1.2

A.4.13

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 43 — GetQueuedTransfers arguments

Argument Type Description

- void This method has no calling arguments.

Table 44 — GetQueuedTransfersResponse arguments

Argument Type Description

TransferList | QueuedTransferStruct[16] | Array of structures as defined in Table 45, each describing the state of
one transfer that the CPE has been instructed to perform, but has not
yet been fully completed.

Table 45 — QueuedTransferStruct definition

Name Type Description

CommandKey | string(32) | Set to the value of the CommandKey argument passed to CPE in the Download or Upload
method call that initiated the transfer.

State int[1:3] The current state of the transfer. Defined values are:
1 = Not yet started
2 = In progress
3 = Completed, finishing cleanup

All other values are reserved.

The following fault codes are defined for this method: 9000, 9001, 9002.

Schedulelnform

This method MAY be used by an ACS to request the CPE to schedule a one-time Inform method call
(separate from its periodic Inform method calls) sometime in the future. The calling arguments for this
method are defined in Table 46. The arguments in the response are defined in Table 47.

Table 46 — Schedulelnform arguments

Argument Type Description

DelaySeconds | unsignedint | The number of seconds from the time this method is called to the time the CPE is
requested to intiate a one-time Inform method call. The CPE sends a response, and
then DelaySeconds later calls the Inform method. This argument MUST be greater
than zero.

CommandKey string(32) The string to return in the CommandKey element of the InformStruct when the CPE
calls the Inform method.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

Table 47 — SchedulelnformResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

SetVouchers

This method MAY be used by an ACS to set one or more option Vouchers in the CPE. The calling
arguments for this method are defined in Table 48. The arguments in the response are defined in Table 49.

December 2007 © The Broadband Forum. All rights reserved. 69

A4.14

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Table 48 — SetVouchers arguments

Argument

Type Description

VoucherList

base64[] | Array of Vouchers, where each Voucher is represented as a Base64 encoded octet string.

The detailed structure of a Voucher is defined in Annex C.

Table 49 — SetVouchersResponse arguments

Argument

Type

Description

void

This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004.

GetOptions

This method MAY be used by an ACS to obtain a list of the options currently set in a CPE, and their
associated state information. The calling arguments for this method are defined in Table 50. The
arguments in the response are defined in Table 51.

Table 50 — GetOptions arguments

Argument

Type Description

OptionName

string(64) | A string representing either the name of a particular Option, or an empty string indicating

the method SHOULD return the state of all Options supported by the CPE (whether or not
they are currently enabled).

Table 51 — GetOptionsResponse arguments

Argument

Type

Description

OptionList

OptionStruct]]

Array of OptionStructs as defined in Table 52, containing either a single OptionStruct if
information about a particular Option was requested, or a list of OptionStructs, one for
each option supported by the CPE.

Table 52 — OptionStruct definition

Name

Type

Description

OptionName

string(64) Identifying name of the particular Option.

VoucherSN

unsignedint Identifying number of the particular Option.

State

unsignedint A number formed by two bits, defined as follows:

Bit O (LSB):
0 = Option is currently disabled
1 = Option is currently enabled
Bit 1:
0 = Option has not been setup
1 = Option has been setup

The interpretation of the setup state of an Option is Option-specific, but in
general is to be interpreted as indicating whether the end-user has
actively performed any actions required to make the Option fully
operational.

December 2007

© The Broadband Forum. All rights reserved. 70

A4.15

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Name Type Description

Mode int[0:2] This element specifies whether the designated Option is enabled or
disabled; and if enabled, whether or not an expiration has been specified.
The defined values are:

0 = Disabled
1 = Enabled with expiration
2 = Enabled without expiration

StartDate dateTime The specified start date for the Option in UTC. If in the future, this is the
date the Option is to be enabled. If in the past, this is the date the Option
was enabled.

This element applies only when the value of the Mode element is 1
(Enabled with expiration). When the Mode element has any other value,
StartDate MUST be set to the Unknown Time value.

ExpirationDate dateTime The specified date the Option is to expire in UTC, if any.

This element applies only when the value of the Mode element is 1
(Enabled with expiration). When the Mode element has any other value,
ExpirationDate MUST be set to the Unknown Time value.

IsTransferable boolean Indicates whether or not the Option has been designated transferable or
non-transferable (see Annex C). Defined values are:

0 = Non-transferable
1 = Transferable

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

Upload

This method MAY be used by the ACS to cause the CPE to upload a specified file to the designated
location. The calling arguments for this method are defined in Table 53. The arguments in the response
are defined in Table 54.

If the file cannot be successfully uploaded, the CPE MUST NOT attempt to retry the file upload on its own
initiative, but instead MUST report the failure of the upload to the ACS via either the Upload response (if it
has not yet been sent) or the TransferComplete method. Upon the ACS being informed of the failure of an

upload, the ACS MAY subsequently attempt to reinitiate the upload by issuing a new Upload request.

If the CPE receives one or more Upload requests before performing a previously requested upload, the CPE
MUST queue all requested uploads and perform each of them as closely as possible to the requested time
(based on the value of the DelaySeconds argument and the time of the request). Queued uploads MUST be
retained across reboots of the CPE. The CPE MUST be able to queue a minimum of three file transfers
(downloads and uploads).

For each upload performed, the CPE MUST send a distinct TransferComplete. Note that the order in which
a series of requested uploads will be performed might differ from the order of the corresponding requests
due to differing values of DelaySeconds. For example, an ACS could request an upload with
DelaySeconds equal to one hour, then five minutes later request a second upload with DelaySeconds equal
to one minute. In this case, the CPE would perform the second upload before the first.

Table 53 — Upload arguments

Argument Type Description

CommandKey string(32) The string the CPE uses to refer to a particular upload. This argument is referenced
in the methods Inform, TransferComplete and GetQueuedTransfers.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be

an empty string.

December 2007 © The Broadband Forum. All rights reserved. 71

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Argument

Type

Description

FileType

string(64)

An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

“1 Vendor Configuration File”
“2 Vendor Log File”

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <OUI> <Vendor-specific identifier>"

<OUI> is replaced by a 6 hexadecimal-digit OUI (organizationally unique identifier) as
defined in [9], with all upper-case letters and any leading zeros included. The OUI
used for a given vendor-specific file type MUST be one that is assigned to the
organization that defined this file type (which is not necessarily the same as the
vendor of the CPE or ACS).

The FileType argument is intended to fully identify the file to be uploaded. If the
standard values listed above are insufficient to uniquely identify the file, then vendor-
specific file types MAY be used that provide more specific information to allow the
intended file to be identified.

URL

string(256)

URL, as defined in [12], specifying the destination file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in section
2.3.2, MAY be supported. When performing an upload to the URL specified by this
argument, the CPE MUST make use of the HTTP PUT method.

This argument specifies only the destination file location, and does not indicate in any
way the name or location of the local file to be uploaded. The local file to be
uploaded MUST be determined only by the FileType argument.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username

string(256)

Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password

string(256)

Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

DelaySeconds

unsignedint

The number of seconds from the time this method is called to the time the CPE is
requested to initiate the upload. A value of zero indicates that no delay is requested.
If a non-zero delay is requested, the upload MUST NOT occur in the same
transaction session in which the request was issues.

The CPE MUST perform the upload immediately after the time indicated by
DelaySeconds, unless this is not possible for reasons outside the CPE’s control, in
which case the CPE MUST attempt to perform the upload within one hour after the
time indicated by DelaySeconds. If the CPE cannot begin the upload within this time
window, the CPE MUST consider the upload to have failed and report this failure to
the ACS using the TransferComplete method.

The CPE MUST attempt to perform the upload within the time window specified
above even if the CPE reboots one or more times prior to that time.

Table 54 — UploadResponse arguments

Argument Type Description

Status int[0:1] A successful response to this method returns an integer enumeration defined as
follows:
0 = Upload has completed.
1 = Upload has not yet completed (for example, if the upload needs to wait until after

the session has been terminated).

If the value of this argument is non-zero, the CPE MUST subsequently call the
TransferComplete method to indicate the completion status of this upload (either
successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime dateTime | The date and time upload was started in UTC. This need only be filled in if the upload
has been completed. Otherwise, the value MUST be set to the Unknown Time value.

CompleteTime | dateTime | The date and time the upload was fully completed and applied in UTC. This need only
be filled in if the upload has been completed. Otherwise, the value MUST be set to the
Unknown Time value.

December 2007 © The Broadband Forum. All rights reserved. 72

A.4.1.6

A4.17

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004, 9011, 9012, 9013.

If an attempt is made to queue an upload when the file transfer queue is already full, the CPE MUST
respond with fault 9004 (Resources exceeded). If the CPE detects the presence of the “userinfo”
component in the file destination URL, it SHOULD reject the Upload request with the fault code 9003
(Invalid arguments).

FactoryReset

This method resets the CPE to its factory default state, and calls for use with extreme caution. The CPE
MUST initiate the factory reset procedure only after successful completion of the session. The calling
arguments for this method are defined in Table 55. The arguments in the response are defined in Table 56.

Table 55 — FactoryReset arguments

Argument Type Description

- void This method has no arguments.

Table 56 — FactoryResetResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

GetAllQueuedTransfers

This method MAY be used by an ACS to determine the status of all queued downloads and uploads,
including any that were not specifically requested by the ACS, i.e. autonomous transfers. The calling
arguments for this method are defined in Table 57. The arguments in the response are defined in Table 58.

Table 57 — GetAllQueuedTransfers arguments

Argument Type Description

- void This method has no calling arguments.

Table 58 — GetAllQueuedTransfersResponse arguments

Argument Type Description

TransferList | AllQueuedTransferStruct[16] | Array of structures as defined in Table 59, each describing the state
of one transfer that has not yet been fully completed.

Table 59 — AllQueuedTransferStruct definition

Name Type Description

CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download or
Upload method call that initiated the transfer, or an empty string for an
autonomous transfer.

State int[1:3] The current state of the transfer. Defined values are:
1 = Not yet started
2 = In progress
3 = Completed, finishing cleanup

All other values are reserved.

December 2007 © The Broadband Forum. All rights reserved. 73

A.4.2

A4.21

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Name Type Description
IsDownload boolean Indicates whether the transfer is a download (true) or an upload (false).
FileType string(64) An integer followed by a space followed by the file type description. Only the

following values are currently defined for the FileType argument:
"1 Firmware Upgrade Image" (download only)
"2 Web Content" (download only)
“3 Vendor Configuration File” (download or upload)
“4 Vendor Log File” (upload only)

The following format is defined to allow the unique definition of vendor-specific file
types:
"X <OUI> <Vendor-specific identifier>"

<OUI> is replaced by a 6 hexadecimal-digit OUI (organizationally unique identifier)
as defined in [9], with all upper-case letters and any leading zeros included. The
OUI used for a given vendor-specific file type MUST be one that is assigned to the
organization that defined this file type (which is not necessarily the same as the
vendor of the CPE or ACS).

FileSize unsignedint | The size of the file in bytes, or zero if this information is not available or if the CPE

chooses not to make it available.

TargetFileName | string(256) The name of the file on the target (CPE) file system, or an empty string if this

information is not available or if the CPE chooses not to make it available.

The following fault codes are defined for this method: 9000, 9001, 9002.

ACS Methods

The methods listed in this section MAY optionally be supported on an ACS. Only a CPE can call these

methods.

Kicked

The CPE calls this method whenever the CPE is “kicked” as described in Annex D. The calling arguments
for this method are defined in Table 60. The arguments in the response are defined in Table 61.

Table 60 — Kicked arguments

Argument | Type

Value

Command string(32)

Generic argument that MAY be used by the ACS for identification or other purposes.

Referer string(64)

The content of the “Referer” HTTP header sent to the CPE when it was kicked.

Arg string(256)

Generic argument that MAY be used by the ACS for identification or other purposes.

Next string(1024)

The URL the ACS SHOULD return in the method response under normal conditions.

Table 61 — KickedResponse arguments

Argument | Type

Value

NextURL string(1024)

The next URL the user’s browser SHOULD be redirected to. This URL MAY include CGI
arguments (for example, to maintain session state).

If the ACS wishes to send the user’s browser to a page on the CPE device itself, only the
path portion of the URL is returned as a result (e.g. “/security/index.html”). This allows the
CPE to use its canonical hostname in the HTTP 302 response. Note that this would require
the ACS to have previous knowledge of available URLs on the CPE device through some
mechanism outside the scope of this specification.

If this method returns a fault, the CPE SHOULD redirect the browser to an error page resident on the CPE

device.

December 2007

© The Broadband Forum. All rights reserved. 74

A.4.2.2

A5

A5.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

RequestDownload

This method allows the CPE to request a file download from the ACS. On reception of this request, the
ACS MAY call the Download method to initiate the download. The calling arguments for this method
are defined in Table 62. The arguments in the response are defined in Table 63.

Table 62 — RequestDownload arguments

Argument Type Value

FileType string(64) This is the FileType being requested (see Table 30 for the list of allowed file types).

FileTypeArg | ArgStruct[16] | Array of zero or more additional arguments, where each argument is a structure of
name-value pairs as defined in Table 64. The use of the additional arguments
depend on the FileType specified.

The following arguments are defined for each of the currently defined file types.

FileType FileTypeArg Names
1 Firmware Upgrade (none)

2 Web Content “Version”

3 Vendor Configuration File (none)

If the ACS receives arguments that it does not understand, it MUST ignore the
unknown arguments, but process the request using the arguments that it does

understand.

Table 63 — RequestDownloadResponse arguments

Argument Type Description

- void This method response has no arguments.

Table 64 — ArgStruct definition

Name Type Description
Name string(64) Argument name.
Value string(256) Argument value.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

Fault Handling

CPE Fault Codes

Table 65 lists the fault codes that can be returned by a CPE. Note that the fault code values are shown in
decimal representation.

Table 65 — Fault codes

Fault code Description Type™

9000 Method not supported Server

! The specified Type MUST be used to determine the value of the SOAP faultcode element as described in
section 3.5.

December 2007 © The Broadband Forum. All rights reserved. 75

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Fault code Description Type™

9001 Request denied (no reason specified) Server

9002 Internal error Server

9003 Invalid arguments Client

9004 Resources exceeded (when used in association with SetParameterValues, this Server
MUST NOT be used to indicate parameters in error)

9005 Invalid parameter name (associated with Set/GetParameterValues, Client
GetParameterNames, Set/GetParameterAttributes, AddObject, and DeleteObject)

9006 Invalid parameter type (associated with SetParameterValues) Client

9007 Invalid parameter value (associated with SetParameterValues) Client

9008 Attempt to set a non-writable parameter (associated with SetParameterValues) Client

9009 Notification request rejected (associated with SetParameterAttributes method). Server

9010 Download failure (associated with Download, TransferComplete or Server
AutonomousTransferComplete methods).

9011 Upload failure (associated with Upload, TransferComplete or AutonomousTrans- Server
ferComplete methods).

9012 File transfer server authentication failure (associated with Upload, Download, Server
TransferComplete or AutonomousTransferComplete methods).

9013 Unsupported protocol for file transfer (associated with Upload and Download Server
methods).

9014 Download failure: unable to join multicast group (associated with Download, Server

TransferComplete or AutonomousTransferComplete methods).

9015 Download failure: unable to contact file server (associated with Download, Server
TransferComplete or AutonomousTransferComplete methods).

9016 Download failure: unable to access file (associated with Download, Server
TransferComplete or AutonomousTransferComplete methods).

9017 Download failure: unable to complete download (associated with Download, Server
TransferComplete or AutonomousTransferComplete methods).

9018 Download failure: file corrupted (associated with Download, TransferComplete or Server
AutonomousTransferComplete methods).

9019 Download failure: file authentication failure (associated with Download, Server
TransferComplete or AutonomousTransferComplete methods).

9800 — 9899 Vendor defined fault codes -

A.5.2 ACS Fault Codes

Table 66 lists the fault codes that can be returned by an ACS. Note that the fault code values are shown in
decimal representation.

Table 66 — Fault codes

Fault code Description Type™
8000 Method not supported Server
8001 Request denied (no reason specified) Server
8002 Internal error Server
8003 Invalid arguments Client
8004 Resources exceeded Server
8005 Retry request Server
8800 - 8899 Vendor defined fault codes -

December 2007 © The Broadband Forum. All rights reserved. 76

A.6

OCO~NOUTRWNEF

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

RPC Method XML Schema

The XML schema for all RPC methods defined for the CPE WAN Management Protocol is specified
below:

<?xml version="1.0" encoding="UTF-8"?>
<I--
CWMP XML Schema v1.1

Notice:

The Broadband Forum is a non-profit corporation organized to create guidelines
For DSL network system development and deployment. This XML Schema has

been approved by members of the Forum. This document is not binding on

the Broadband Forum, any of its members, or any developer or service provider.
The document is subject to change, but only with approval of members of

the Forum.

Copyright 2004-2007 Digital Subscriber Line Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Notwithstanding anything to the contrary, the Broadband Forum makes no
representation or warranty, expressed or implied, concerning this

publication, its contents or the completeness, accuracy, or applicability

of any information contained in this publication. No liability of any kind
shall be assumed by the Broadband Forum as a result of reliance upon any
information contained in this publication. The Broadband Forum does not assume
any responsibility to update or correct any information in this

publication.

Summary:
XML Schema for TR-069 CPE WAN Management Protocol (CWMP) v1.1 RPC requests
and responses.

Version History:
November 2006: cwmp-1-0.xsd, extracted from TR-069 Amendment 1
November 2007: cwmp-1-1.xsd, extracted from TR-069 Amendment 2
_—
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema"
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/""
xmIns:soapenc="http://schemas.xmlsoap.org/soap/encoding/""
xmIns:tns="urn:dslforum-org:cwmp-1-1"
targetNamespace=""urn:dslforum-org:cwmp-1-1"
elementFormDefault="unqualified"
attributeFormbDefaul t=""unqualified">

<xs:import namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemalLocation="http://schemas.xmlsoap.org/soap/envelope/*/>

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/"
schemalLocation="http://schemas.xmlsoap.org/soap/encoding/"/>

i
SOAP Header Elements
_—
<xs:element name=""1D"">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="'xs:string'>
<xs:attribute ref="soapenv:mustUnderstand" use="required" fixed="1"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name=""HoldRequests''>
<xs:complexType>

December 2007 © The Broadband Forum. All rights reserved. 77

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute ref="soapenv:mustUnderstand" use="required" fixed="1"'"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

SOAP Fault Extensions
_—
<xs:simpleType name="FaultCodeType'>
<xXs:union>
<xs:simpleType>
<xs:restriction base='xs:unsignedInt'>
<Xs:annotation>
<xs:documentation>CPE fault codes</xs:documentation>
</Xs:annotation>
<xs:enumeration value='9000">
<Xs:annotation>
<xs:documentation>Method not supported</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value='9001">
<Xs:annotation>
<xs:documentation>Request denied (no reason specified)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="9002">
<xXs:annotation>
<xs:documentation>Internal error</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="9003">
<xs:annotation>
<xs:documentation>Invalid arguments</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="9004">
<xs:annotation>
<xs:documentation>Resources exceeded</xs:documentation>
</xs:annotation>
</Xs:enumeration>
<xs:enumeration value='"9005">
<xs:annotation>
<xs:documentation>Invalid parameter name</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value='9006">
<Xs:annotation>
<xs:documentation>Invalid parameter type</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value='9007">
<Xs:annotation>
<xs:documentation>Invalid parameter value</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="9008">
<xXs:annotation>
<xs:documentation>Attempt to set a non-writable parameter</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="9009">
<xs:annotation>
<xs:documentation>Notification request rejected</xs:documentation>
</xs:annotation>
</Xs:enumeration>
<xs:enumeration value="9010">
<xs:annotation>

December 2007 © The Broadband Forum. All rights reserved. 78

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

136 <xs:documentation>Download failure</xs:documentation>

137 </xs:annotation>

138 </xs:enumeration>

139 <xs:enumeration value="9011">

140 <xs:annotation>

141 <xs:documentation>Upload failure</xs:documentation>

142 </xs:annotation>

143 </xs:enumeration>

144 <xs:enumeration value="9012">

145 <xs:annotation>

146 <xs:documentation>File transfer server authentication failure</xs:documentation>
147 </xs:annotation>

148 </xs:enumeration>

149 <xs:enumeration value="9013">

150 <xs:annotation>

151 <xs:documentation>Unsupported protocol for file transfer</xs:documentation>
152 </xs:annotation>

153 </xs:enumeration>

154 <xs:enumeration value="9014">

155 <xs:annotation>

156 <xs:documentation>Download failure: unable to join multicast
157 group</xs:documentation>

158 </xs:annotation>

159 </xs:enumeration>

160 <xs:enumeration value="9015">

161 <xs:annotation>

162 <xs:documentation>Download failure: unable to contact file
163 server</xs:documentation>

164 </xs:annotation>

165 </xs:enumeration>

166 <xs:enumeration value="9016">

167 <xs:annotation>

168 <xs:documentation>Download failure: unable to access file</xs:documentation>
169 </xs:annotation>

170 </xs:enumeration>

171 <xs:enumeration value="9017">

172 <xs:annotation>

173 <xs:documentation>Download failure: unable to complete download</xs:documentation>
174 </xs:annotation>

175 </xs:enumeration>

176 <xs:enumeration value="9018">

177 <xs:annotation>

178 <xs:documentation>Download failure: file corrupted</xs:documentation>
179 </xs:annotation>

180 </xs:enumeration>

181 <xs:enumeration value="9019">

182 <xs:annotation>

183 <xs:documentation>Download failure: Ffile authentication failure</xs:documentation>
184 </xs:annotation>

185 </xs:enumeration>

186 </xs:restriction>

187 </xs:simpleType>

188 <xs:simpleType>

189 <xs:restriction base="xs:unsignedInt">

190 <xs:annotation>

191 <xs:documentation>Future expansion fault codes</xs:documentation>
192 </xs:annotation>

193 <xs:minlnclusive value='"9020"/>

194 <xs:maxInclusive value="9799"/>

195 </xs:restriction>

196 </xs:simpleType>

197 <xs:simpleType>

198 <xs:restriction base="xs:unsignedInt">

199 <xs:annotation>

200 <xs:documentation>CPE Vendor fault codes</xs:documentation>
201 </xs:annotation>

202 <xs:minlnclusive value="9800"/>

203 <xs:maxInclusive value="9899"/>

204 </xs:restriction>

205 </xs:simpleType>

206 <xs:simpleType>

December 2007 © The Broadband Forum. All rights reserved. 79

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

207 <xs:restriction base="xs:unsignedInt>

208 <xs:annotation>

209 <xs:documentation>ACS fault codes</xs:documentation>

210 </xs:annotation>

211 <xs:enumeration value="8000">

212 <xs:annotation>

213 <xs:documentation>Method not supported</xs:documentation>
214 </xs:annotation>

215 </xs:enumeration>

216 <xs:enumeration value="8001">

217 <xs:annotation>

218 <xs:documentation>Request denied (no reason specified)</xs:documentation>
219 </xs:annotation>

220 </xs:enumeration>

221 <xs:enumeration value="8002">

222 <xs:annotation>

223 <xs:documentation>Internal error</xs:documentation>
224 </xs:annotation>

225 </xs:enumeration>

226 <xs:enumeration value="8003">

227 <xs:annotation>

228 <xs:documentation>Invalid arguments</xs:documentation>
229 </xs:annotation>

230 </xs:enumeration>

231 <xs:enumeration value="8004">

232 <xs:annotation>

233 <xs:documentation>Resources exceeded</xs:documentation>
234 </xs:annotation>

235 </xs:enumeration>

236 <xs:enumeration value="8005">

237 <xs:annotation>

238 <xs:documentation>Retry request</xs:documentation>

239 </xs:annotation>

240 </xs:enumeration>

241 </xs:restriction>

242 </xs:simpleType>

243 <xs:simpleType>

244 <xs:restriction base='"xs:unsignedInt'>

245 <xs:annotation>

246 <xs:documentation>Future expansion fault codes</xs:documentation>
247 </xs:annotation>

248 <xs:minlnclusive value="8006"/>

249 <xs:maxInclusive value="8799"/>

250 </xs:restriction>

251 </xs:simpleType>

252 <xs:simpleType>

253 <xs:restriction base='"xs:unsignedInt'>

254 <xs:annotation>

255 <xs:documentation>ACS Vendor fault codes</xs:documentation>
256 </xs:annotation>

257 <xs:minlnclusive value="8800"/>

258 <xs:maxInclusive value="8899"/>

259 </xs:restriction>

260 </xs:simpleType>

261 </xs:union>

262 </xs:simpleType>

263 <xs:element name="Fault'>

264 <xs:complexType>

265 <xs:sequence>

266 <xs:element name="FaultCode" type="tns:FaultCodeType'/>

267 <xs:element name="FaultString" type="xs:string" minOccurs="0"/>
268 <xs:element name="'SetParameterValuesFault" minOccurs="0" maxOccurs="unbounded">
269 <xs:complexType>

270 <xs:sequence>

271 <xs:element name="‘ParameterName" type="'xs:string"/>

272 <xs:element name="FaultCode" type='"tns:FaultCodeType'/>
273 <xs:element name="FaultString" type="xs:string" minOccurs="0"/>
274 </Xs:sequence>

275 </xs:complexType>

276 </xs:element>

277 </xs:sequence>

December 2007 © The Broadband Forum. All rights reserved. 80

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

278 </xs:complexType>

279 </xs:element>

280

281

282 <l--

283 Type definitions used in messages

284 -—>

285 <xs:complexType name='"MethodList'">

286 <xs:complexContent>

287 <xs:restriction base='"soapenc:Array">

288 <xs:sequence>

289 <xs:element name="string" maxOccurs="unbounded’>

290 <xs:simpleType>

291 <xs:restriction base="xs:string">

292 <xs:maxLength value="64"/>

293 </xs:restriction>

294 </xs:simpleType>

295 </xs:element>

296 </xs:sequence>

297 <xs:attribute ref="soapenc:arrayType" use='"required'/>
298 </xs:restriction>

299 </xs:complexContent>

300 </xs:complexType>

301

302 <xs:complexType name="FaultStruct'>

303 <xs:annotation>

304 <xs:documentation>Fault information for TransferComplete and
305 AutonomousTransferComplete</xs:documentation>
306 </xs:annotation>

307 <xs:sequence>

308 <xs:element name="FaultCode">

309 <xs:annotation>

310 <xs:documentation>Transfer fault codes</xs:documentation>
311 </xs:annotation>

312 <xs:simpleType>

313 <xs:union>

314 <xs:simpleType>

315 <xs:restriction base="xs:unsignedInt">

316 <xs:enumeration value="0">

317 <xs:annotation>

318 <xs:documentation>No fault</xs:documentation>
319 </xs:annotation>

320 </xs:enumeration>

321 <xs:enumeration value="9001">

322 <xs:annotation>

323 <xs:documentation>Request denied (no reason specified)</xs:documentation>
324 </xs:annotation>

325 </xs:enumeration>

326 <xs:enumeration value="9002">

327 <xs:annotation>

328 <xs:documentation>Internal error</xs:documentation>
329 </xs:annotation>

330 </xs:enumeration>

331 <xs:enumeration value="9010">

332 <xs:annotation>

333 <xs:documentation>Download failure</xs:documentation>
334 </xs:annotation>

335 </xs:enumeration>

336 <xs:enumeration value="9011">

337 <xs:annotation>

338 <xs:documentation>Upload failure</xs:documentation>
339 </xs:annotation>

340 </xs:enumeration>

341 <xs:enumeration value="9012">

342 <xs:annotation>

343 <xs:documentation>File transfer server authentication
344 failure</xs:documentation>

345 </xs:annotation>

346 </xs:enumeration>

347 <xs:enumeration value="9014">

348 <xs:annotation>

December 2007 © The Broadband Forum. All rights reserved. 81

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

349 <xs:documentation>Download failure: unable to join multicast
350 group</xs:documentation>

351 </xs:annotation>

352 </xs:enumeration>

353 <xs:enumeration value="9015">

354 <xs:annotation>

355 <xs:documentation>Download failure: unable to contact file
356 server</xs:documentation>

357 </xs:annotation>

358 </xs:enumeration>

359 <xs:enumeration value="9016">

360 <xs:annotation>

361 <xs:documentation>Download failure: unable to access file</xs:documentation>
362 </xs:annotation>

363 </xs:enumeration>

364 <xs:enumeration value="9017">

365 <xs:annotation>

366 <xs:documentation>Download failure: unable to complete
367 download</xs:documentation>

368 </xs:annotation>

369 </xs:enumeration>

370 <xs:enumeration value="9018">

371 <xs:annotation>

372 <xs:documentation>Download failure: file corrupted</xs:documentation>
373 </xs:annotation>

374 </xs:enumeration>

375 <xs:enumeration value="9019">

376 <xs:annotation>

377 <xs:documentation>Download failure: file authentication
378 fai lure</xs:documentation>

379 </xs:annotation>

380 </xs:enumeration>

381 </xs:restriction>

382 </xs:simpleType>

383 <xs:simpleType>

384 <xs:restriction base="xs:unsignedInt">

385 <xs:annotation>

386 <xs:documentation>Future expansion fault codes</xs:documentation>
387 </xs:annotation>

388 <xs:minlnclusive value="9020"/>

389 <xs:maxInclusive value='"9799"/>

390 </xs:restriction>

391 </xs:simpleType>

392 <xs:simpleType>

393 <xs:restriction base="xs:unsignedInt">

394 <xs:annotation>

395 <xs:documentation>CPE Vendor fault codes</xs:documentation>
396 </xs:annotation>

397 <xs:minlnclusive value='"9800"/>

398 <xs:maxInclusive value='"9899"/>

399 </xs:restriction>

400 </xs:simpleType>

401 </xs:union>

402 </xs:simpleType>

403 </xs:element>

404 <xs:element name="FaultString">

405 <xs:simpleType>

406 <xs:restriction base='"xs:string">

407 <xs:maxLength value="256"/>

408 </xs:restriction>

409 </xs:simpleType>

410 </xs:element>

411 </xs:sequence>

412 </xs:complexType>

413

414 <xs:complexType name="DeviceldStruct'>

415 <xs:sequence>

416 <xs:element name="Manufacturer'>

417 <xs:simpleType>

418 <xs:restriction base="xs:string">

419 <xs:maxLength value="64"/>

December 2007 © The Broadband Forum. All rights reserved. 82

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

CPE WAN Management Protocol v1.1

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="0UIl">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:length value="6"/>
<xs:pattern value="[0-9A-F]{6}"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ProductClass'">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="SerialNumber'>
<xs:simpleType>
<xs:restriction base=''xs:string">
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="EventStruct'>
<xs:sequence>
<xs:element name="EventCode'>
<xs:simpleType>
<xs:restriction base=''xs:string">
<xs:maxLength value="64"/>
<xs:pattern value="0 BOOTSTRAP"/>
<xs:pattern value="1 BOOT"/>
<xs:pattern value="2 PERIODIC"/>
<xs:pattern value="3 SCHEDULED"/>
<xs:pattern value="4 VALUE CHANGE"/>
<xs:pattern value="5 KICKED"/>
<xs:pattern value="6 CONNECTION REQUEST"/>
<xs:pattern value="7 TRANSFER COMPLETE"/>
<xs:pattern value="8 DIAGNOSTICS COMPLETE"/>
<xs:pattern value="9 REQUEST DOWNLOAD"/>
<xs:pattern value="10 AUTONOMOUS TRANSFER COMPLETE"/>
<xs:pattern value="\d+(\S+)+'"/>
<xs:pattern value="M Reboot'/>
<xs:pattern value="M Schedulelnform"/>
<xs:pattern value="M Download"'/>
<xs:pattern value="M Upload"/>
<xs:pattern value="M \S+"/>
<xs:pattern value="M X_\S+"/> <I-- no spaces in method names -->
<xs:pattern value="X [0-9A-F]{6} .*"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name=""CommandKey' type=""tns:CommandKeyType'/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="EventList">
<xs:complexContent>
<xs:restriction base='"soapenc:Array'>
<xs:sequence>

<xs:element name="EventStruct" type=""tns:EventStruct" minOccurs="0"

</Xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required'/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:complexType name='ParameterValueStruct'>

December 2007 © The Broadband Forum. All rights reserved.

TR-069 Issue 1 Amendment 2

maxOccurs="64"/>

83

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

491 <xs:sequence>

492 <xs:element name='"Name''>

493 <xs:simpleType>

494 <xs:restriction base='"xs:string">

495 <xs:maxLength value="256"/>

496 </xs:restriction>

497 </xs:simpleType>

498 </xs:element>

499 <xs:element name="Value" type='"xs:anySimpleType"/>
500 </Xs:sequence>

501 </xs:complexType>

502 <xs:complexType name='‘ParameterValuelList'>

503 <xs:complexContent>

504 <xs:restriction base='"soapenc:Array">

505 <xs:sequence>

506 <xs:element name="ParameterValueStruct" type="tns:ParameterValueStruct" minOccurs="0"
507 maxOccurs="unbounded"/>

508 </Xs:sequence>

509 <xs:attribute ref="soapenc:arrayType" use="required'/>
510 </xs:restriction>

511 </xs:complexContent>

512 </xs:complexType>

513

514 <xs:complexType name="ParameterlInfoStruct'>

515 <xs:sequence>

516 <xs:element name="Name'>

517 <xs:simpleType>

518 <xs:restriction base="xs:string">

519 <xs:maxLength value="256"/>

520 </xs:restriction>

521 </xs:simpleType>

522 </xs:element>

523 <xs:element name="Writable" type="xs:boolean"/>
524 </Xs:sequence>

525 </xs:complexType>

526 <xs:complexType name='ParameterInfolList'>

527 <xs:complexContent>

528 <xs:restriction base='"soapenc:Array">

529 <xs:sequence>

530 <xs:element name="ParameterInfoStruct" type=""tns:ParameterlInfoStruct” minOccurs="0"
531 maxOccurs="unbounded"/>

532 </xs:sequence>

533 <xs:attribute ref="soapenc:arrayType" use="required"/>
534 </xs:restriction>

535 </xs:complexContent>

536 </xs:complexType>

537

538 <xs:complexType name='ParameterNames'>

539 <xs:complexContent>

540 <xs:restriction base='"soapenc:Array">

541 <xs:sequence>

542 <xs:element name="string" minOccurs="1" maxOccurs="unbounded">
543 <xs:simpleType>

544 <xs:restriction base="xs:string">

545 <xs:maxLength value="256"/>

546 </xs:restriction>

547 </xs:simpleType>

548 </xs:element>

549 </xs:sequence>

550 <xs:attribute ref="soapenc:arrayType" use="required"/>
551 </xs:restriction>

552 </xs:complexContent>

553 </xs:complexType>

554

555 <xs:simpleType name="ParameterKeyType'>

556 <xs:restriction base="xs:string">

557 <xs:maxLength value="32"/>

558 </xs:restriction>

559 </xs:simpleType>

560

561 <xs:complexType name="AccessList">

December 2007 © The Broadband Forum. All rights reserved. 84

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
S77
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<xs:complexContent>
<xs:restriction base='"soapenc:Array'>
<xs:sequence>
<xs:element name="'string" minOccurs="0" maxOccurs="unbounded'>
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="64"/>
<xs:enumeration value='"Subscriber"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:complexType name='SetParameterAttributesStruct'>
<Xs:sequence>
<xs:element name="Name" nillable=""true">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value='"256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="NotificationChange" type="xs:boolean'/>
<xs:element name="Notification">
<xs:simpleType>
<xs:restriction base='"'xs:int'">
<xs:enumeration value="0">
<xs:annotation>
<xs:documentation>Notification off. The CPE need not inform the ACS of a change
to the specified parameter(s)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="1">
<xs:annotation>
<xs:documentation>Passive notification. Whenever the specified parameter value
changes, the CPE MUST include the new value in the ParameterList in the
Inform message that is sent the next time a session is established to the
ACS</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="2">
<xs:annotation>
<xs:documentation>Active notification. Whenever the specified parameter value
changes, the CPE MUST initiate a session to the ACS, and include the new
value in the ParameterList in the associated Inform
message</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name=""AccessListChange" type=''xs:boolean"/>
<xs:element name=""AccessList" type=""tns:AccessList"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name=''SetParameterAttributesList'>
<xs:complexContent>
<xs:restriction base='"soapenc:Array'>
<xs:sequence>
<xs:element name="'SetParameterAttributesStruct" type="tns:SetParameterAttributesStruct"
minOccurs="1" maxOccurs=""unbounded’/>
</Xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required'/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

December 2007 © The Broadband Forum. All rights reserved. 85

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<xs:complexType name='ParameterAttributeStruct'>
<xs:sequence>
<xs:element name="Name'>
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Notification">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="AccessList" type="tns:AccessList"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name='ParameterAttributeList">
<xs:complexContent>
<xs:restriction base='"soapenc:Array'>
<xs:sequence>
<xs:element name="ParameterAttributeStruct” type=""tns:ParameterAttributeStruct"
minOccurs="0" maxOccurs=""unbounded’/>
</Xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required'/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="QueuedTransferStruct'>
<xs:sequence>
<xs:element name=""CommandKey' type=""tns:CommandKeyType'/>
<xs:element name="State'">
<xs:simpleType>
<xs:restriction base=''xs:int'>
<xs:enumeration value="1">
<xs:annotation>
<xs:documentation>1 - Not yet started</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="2">
<xs:annotation>
<xs:documentation>2 - In progress</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="3">
<xs:annotation>
<xs:documentation>3 - Completed</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="TransferList">
<xs:complexContent>
<xs:restriction base='"soapenc:Array'>
<xs:sequence>
<xs:element name="'QueuedTransferStruct" type=""tns:QueuedTransferStruct" minOccurs="0"
maxOccurs="16"/>
</Xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required'/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

December 2007 © The Broadband Forum. All rights reserved. 86

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

704 <xs:complexType name="AllQueuedTransferStruct'>

705 <xs:sequence>

706 <xs:element name="CommandKey" type="tns:CommandKeyType'/>
707 <xs:element name="State">

708 <xs:simpleType>

709 <xs:restriction base="xs:int">

710 <xs:enumeration value="1">

711 <xs:annotation>

712 <xs:documentation>1 - Not yet started</xs:documentation>
713 </xs:annotation>

714 </xs:enumeration>

715 <xs:enumeration value="2">

716 <xs:annotation>

717 <xs:documentation>2 - In progress</xs:documentation>
718 </xs:annotation>

719 </xs:enumeration>

720 <xs:enumeration value="3">

721 <xs:annotation>

722 <xs:documentation>3 - Completed</xs:documentation>
723 </xs:annotation>

724 </xs:enumeration>

725 </xs:restriction>

726 </xs:simpleType>

727 </xs:element>

728 <xs:element name="IsDownload" type='"xs:boolean"/>

729 <xs:element name="FileType'">

730 <xs:simpleType>

731 <xs:restriction base="xs:string">

732 <xs:maxLength value="64"/>

733 <xs:pattern value="1 Firmware Upgrade Image'/>
734 <xs:pattern value="2 Web Content'/>

735 <xs:pattern value="3 Vendor Configuration File"/>
736 <xs:pattern value="4 Vendor Log File"/>

737 <xs:pattern value="X [0-9A-F]{6} .*"/>

738 </xs:restriction>

739 </xs:simpleType>

740 </xs:element>

741 <xs:element name="FileSize" type="xs:unsignedInt'/>

742 <xs:element name="TargetFileName'>

743 <xs:simpleType>

744 <xs:restriction base="xs:string">

745 <xs:maxLength value="256"/>

746 </xs:restriction>

147 </xs:simpleType>

748 </xs:element>

749 </xs:sequence>

750 </xs:complexType>

751 <xs:complexType name="AllTransferList">

752 <xs:complexContent>

753 <xs:restriction base='"soapenc:Array">

754 <xs:sequence>

755 <xs:element name="AllQueuedTransferStruct"” type="tns:AllQueuedTransferStruct"
756 minOccurs="0" maxOccurs="16"/>

757 </xs:sequence>

758 <xs:attribute ref="soapenc:arrayType" use="required"/>
759 </xs:restriction>

760 </xs:complexContent>

761 </xs:complexType>

762

763 <xs:complexType name='"VoucherList">

764 <xs:complexContent>

765 <xs:restriction base="soapenc:Array'>

766 <xs:sequence>

767 <xs:element name="base64" type="'soapenc:base64" minOccurs="1" maxOccurs="unbounded"/>
768 </Xs:sequence>

769 <xs:attribute ref="soapenc:arrayType" use="required'/>
770 </xs:restriction>

771 </xs:complexContent>

772 </xs:complexType>

773

774 <xs:complexType name="OptionStruct'>

December 2007 © The Broadband Forum. All rights reserved. 87

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<xs:sequence>
<xs:element name="'OptionName'>
<xs:simpleType>
<xs:restriction base=''xs:string">
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="VoucherSN" type=''xs:unsignedIint"/>
<xs:element name="State''>
<xs:simpleType>
<xs:restriction base='"Xxs:unsignedInt'>
<xs:enumeration value="0">
<xXs:annotation>
<xs:documentation>Option is disabled and not setup</xs:documentation>
</xs:annotation>
</Xs:enumeration>
<xs:enumeration value="1">
<xs:annotation>
<xs:documentation>0Option is enabled and not setup</xs:documentation>
</xs:annotation>
</Xs:enumeration>
<xs:enumeration value="2">
<xs:annotation>
<xs:documentation>0Option is disabled and setup</xs:documentation>
</xs:annotation>
</Xs:enumeration>
<xs:enumeration value="3">
<xs:annotation>
<xs:documentation>Option is enabled and setup</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Mode''>
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="0">
<xs:annotation>
<xs:documentation>0 - Disabled</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="1">
<xs:annotation>
<xs:documentation>1 - Enabled with expiration</xs:documentation>
</xs:annotation>
</Xs:enumeration>
<xs:enumeration value="2">
<xs:annotation>
<xs:documentation>2 - Enabled without expiration</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="StartDate" type=''xs:dateTime"/>
<xs:element name="ExpirationDate" type="xs:dateTime" minOccurs="0"/>
<xs:element name="lIsTransferable">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="0">
<xs:annotation>
<xs:documentation>Non-transferable</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="1">
<Xs:annotation>
<xs:documentation>Transferable</xs:documentation>
</xs:annotation>
</xs:enumeration>

December 2007 © The Broadband Forum. All rights reserved. 88

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

846 </xs:restriction>

847 </xs:simpleType>

848 </xs:element>

849 </Xs:sequence>

850 </xs:complexType>

851 <xs:complexType name="OptionList">

852 <xs:complexContent>

853 <xs:restriction base='"soapenc:Array">
854 <xs:sequence>

855 <xs:element name="OptionStruct” type="tns:OptionStruct” minOccurs="0"
856 maxOccurs="unbounded"/>
857 </xs:sequence>

858 <xs:attribute ref="soapenc:arrayType" use="required"/>
859 </xs:restriction>

860 </xs:complexContent>

861 </xs:complexType>

862

863 <xs:complexType name="ArgStruct’>

864 <xs:sequence>

865 <xs:element name='"Name''>

866 <xs:simpleType>

867 <xs:restriction base="xs:string">
868 <xs:maxLength value="64"/>

869 </xs:restriction>

870 </xs:simpleType>

871 </xs:element>

872 <xs:element name="Value'>

873 <xs:simpleType>

874 <xs:restriction base="xs:string">
875 <xs:maxLength value="256"/>

876 </xs:restriction>

877 </xs:simpleType>

878 </xs:element>

879 </Xs:sequence>

880 </xs:complexType>

881 <xs:complexType name="FileTypeArg">

882 <xs:complexContent>

883 <xs:restriction base='"soapenc:Array">
884 <xs:sequence>

885 <xs:element name="ArgStruct" type='""tns:ArgStruct” minOccurs="0" maxOccurs="16"/>
886 </xs:sequence>

887 <xs:attribute ref="soapenc:arrayType" use="required"/>
888 </xs:restriction>

889 </xs:complexContent>

890 </xs:complexType>

891

892 <xs:simpleType name="CommandKeyType"'>

893 <xs:restriction base="xs:string">

894 <xs:maxLength value="'32"/>

895 </xs:restriction>

896 </xs:simpleType>

897

898 <xs:simpleType name="'ObjectNameType'>

899 <xs:restriction base="xs:string">

900 <xs:maxLength value='256"/>

901 <xs:pattern value="_*_"/>

902 </xs:restriction>

903 </xs:simpleType>

904

905

906 <t--

907 Generic RPC Messages - Annex A.3.1
908 -

909 <1-- GetRPCMethods -->

910 <xs:element name=""GetRPCMethods">

911 <xs:annotation>

912 <xs:documentation>GeRPCMethods message - Annex A.3.1.1</xs:documentation>
913 </xs:annotation>

914 <xs:complexType/>

915 </xs:element>

916

December 2007 © The Broadband Forum. All rights reserved. 89

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

917 <!-- GetRPCMethodsResponse -->

918 <xs:element name="GetRPCMethodsResponse'>

919 <xs:annotation>

920 <xs:documentation>GeRPCMethodsResponse message - Annex A.3.1.1</xs:documentation>
921 </xs:annotation>

922 <xs:complexType>

923 <xs:sequence>

924 <xs:element name="MethodList" type="tns:MethodList"/>

925 </Xs:sequence>

926 </xs:complexType>

927 </xs:element>

928

929

930 <l--

931 CPE messages - Annex A.3.2

932 -—>

933 <l-— SetParameterValues -->

934 <xs:element name="SetParameterValues'>

935 <xs:annotation>

936 <xs:documentation>SetParameterValues message - Annex A.3.2.1</xs:documentation>
937 </xs:annotation>

938 <xs:complexType>

939 <xs:sequence>

940 <xs:element name="ParameterList" type="tns:ParameterValuelList'"/>
941 <xs:element name="ParameterKey' type='"tns:ParameterKeyType'/>

942 </Xs:sequence>

943 </xs:complexType>

944 </xs:element>

945

946 <l-- SetParameterValuesResponse -->

947 <xs:element name="'SetParameterValuesResponse'>

948 <xs:annotation>

949 <xs:documentation>SetParameterValuesResponse message - Annex A.3.2.1</xs:documentation>
950 </xs:annotation>

951 <xs:complexType>

952 <xs:sequence>

953 <xs:element name="Status'>

954 <xs:simpleType>

955 <xs:restriction base="xs:int">

956 <xs:enumeration value="0">

957 <xs:annotation>

958 <xs:documentation>All Parameter changes have been validated and
959 applied</xs:documentation>

960 </xs:annotation>

961 </xs:enumeration>

962 <xs:enumeration value="1">

963 <xs:annotation>

964 <xs:documentation>All Parameter changes have been validated and committed, but
965 some or all are not yet applied (for example, if a reboot is required
966 before the new values are applied)</xs:documentation>
967 </xs:annotation>

968 </xs:enumeration>

969 </xs:restriction>

970 </xs:simpleType>

971 </xs:element>

972 </Xs:sequence>

973 </xs:complexType>

974 </xs:element>

975

976 <l-- GetParameterValues -->

977 <xs:element name="GetParameterValues'>

978 <xs:annotation>

979 <xs:documentation>GetParameterValues message - Annex A.3.2.2</xs:documentation>
980 </xs:annotation>

981 <xs:complexType>

982 <xs:sequence>

983 <xs:element name='""ParameterNames" type='"tns:ParameterNames"/>

984 </Xs:sequence>

985 </xs:complexType>

986 </xs:element>

987

December 2007 © The Broadband Forum. All rights reserved. 90

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<I-- GetParameterValuesResponse -->
<xs:element name=""GetParameterValuesResponse'>
<xs:annotation>
<xs:documentation>GetParameterValuesResponse message - Annex A.3.2.2</xs:documentation>
</xs:annotation>
<xs:complexType>
<Xs:sequence>
<xs:element name="ParameterList" type=""tns:ParameterValuelList'"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- GetParameterNames -->
<xs:element name="CGetParameterNames'>
<xs:annotation>
<xs:documentation>GetParameterNames message - Annex A.3.2.3</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="ParameterPath" nillable="true">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="NextLevel" type=''xs:boolean"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- GetParameterNamesResponse -->
<xs:element name="GetParameterNamesResponse''>
<xs:annotation>
<xs:documentation>GetParameterNamesResponse message - Annex A.3.2.3</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="ParameterList" type=""tns:ParameteriInfolList'/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- SetParameterAttributes -->
<xs:element name="SetParameterAttributes'>
<xs:annotation>
<xs:documentation>SetParameterAttributes message - Annex A.3.2.4</xs:documentation>
</xs:annotation>
<xs:complexType>
<Xs:sequence>
<xs:element name="ParameterList" type="tns:SetParameterAttributesList"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- SetParameterAttributesResponse -->
<xs:element name="SetParameterAttributesResponse’>
<xs:annotation>
<xs:documentation>SetParameterAttributesResponse message - Annex A.3.2.4</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<I-- GetParameterAttributes -->
<xs:element name="GetParameterAttributes'>
<xs:annotation>
<xs:documentation>GetParameterAttributes message - Annex A.3.2_5</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name=""ParameterNames' type='tns:ParameterNames'/>

December 2007 © The Broadband Forum. All rights reserved. 91

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- GetParameterAttributesResponse -->
<xs:element name=""GetParameterAttributesResponse'>
<xs:annotation>
<xs:documentation>GetParameterAttributesResponse message - Annex A.3.2.5</xs:documentation>
</xs:annotation>
<xs:complexType>
<Xs:sequence>
<xs:element name="ParameterList" type="tns:ParameterAttributeList"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<l-- AddObject -->
<xs:element name=""AddObject'>
<xs:annotation>
<xs:documentation>AddObject message - Annex A.3.2.6</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="ObjectName' type="tns:ObjectNameType'/>
<xs:element name="ParameterKey" type=""tns:ParameterKeyType'/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<l-- AddObjectResponse -->
<xs:element name=""AddObjectResponse’>
<xs:annotation>
<xs:documentation>AddObjectResponse message - Annex A.3.2.6</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="InstanceNumber"'>
<xs:simpleType>
<xs:restriction base='"xs:unsignedInt'>
<xs:minlnclusive value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name='"Status">
<xs:simpleType>
<xs:restriction base='"Xxs:int">
<xs:enumeration value="0">
<xXs:annotation>
<xs:documentation>The object has been created</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="1">
<xs:annotation>
<xs:documentation>The object creation has been validated and committed, but not
yet applied</xs:documentation>
</xs:annotation>
</Xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- DeleteObject -->
<xs:element name="DeleteObject">
<xs:annotation>
<xs:documentation>DeleteObject message - Annex A.3.2.7</xs:documentation>
</xs:annotation>
<xs:complexType>
<Xs:sequence>

December 2007 © The Broadband Forum. All rights reserved. 92

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

1130 <xs:element name="ObjectName" type="tns:ObjectNameType'/>
1131 <xs:element name=""ParameterKey" type="‘tns:ParameterKeyType'/>
1132 </xs:sequence>

1133 </xs:complexType>

1134 </xs:element>

1135

1136 <I-- DeleteObjectResponse -->

1137 <xs:element name="DeleteObjectResponse'>

1138 <xs:annotation>

1139 <xs:documentation>DeleteObjectResponse message - Annex A.3.2.7</xs:documentation>
1140 </xs:annotation>

1141 <xs:complexType>

1142 <xs:sequence>

1143 <xs:element name="Status'>

1144 <xs:simpleType>

1145 <xs:restriction base='"xs:int">

1146 <xs:enumeration value="0">

1147 <xs:annotation>

1148 <xs:documentation>The object has been deleted</xs:documentation>
1149 </xs:annotation>

1150 </xs:enumeration>

1151 <xs:enumeration value="1">

1152 <xs:annotation>

1153 <xs:documentation>The object deletion has been validated and committed, but not
1154 yet applied</xs:documentation>

1155 </xs:annotation>

1156 </xs:enumeration>

1157 </xs:restriction>

1158 </xs:simpleType>

1159 </xs:element>

1160 </Xs:sequence>

1161 </xs:complexType>

1162 </xs:element>

1163

1164 <!-- Download -->

1165 <xs:element name="Download">

1166 <xs:annotation>

1167 <xs:documentation>Download message - Annex A.3.2.8</xs:documentation>
1168 </xs:annotation>

1169 <xs:complexType>

1170 <xs:sequence>

1171 <xs:element name=""CommandKey' type='"tns:CommandKeyType'/>
1172 <xs:element name="FileType'">

1173 <xs:simpleType>

1174 <xs:restriction base="xs:string">

1175 <xs:maxLength value="64"/>

1176 <xs:pattern value="1 Firmware Upgrade Image'/>
1177 <xs:pattern value="2 Web Content'/>

1178 <xs:pattern value="3 Vendor Configuration File"/>
1179 <xs:pattern value="X [0-9A-F]{6} .*'/>

1180 </xs:restriction>

1181 </xs:simpleType>

1182 </xs:element>

1183 <xs:element name="URL">

1184 <xs:simpleType>

1185 <xs:restriction base="xs:string">

1186 <xs:maxLength value="256"/>

1187 </xs:restriction>

1188 </xs:simpleType>

1189 </xs:element>

1190 <xs:element name="Username'>

1191 <xs:simpleType>

1192 <xs:restriction base="xs:string'>

1193 <xs:maxLength value="256"/>

1194 </xs:restriction>

1195 </xs:simpleType>

1196 </xs:element>

1197 <xs:element name='"‘Password">

1198 <xs:simpleType>

1199 <xs:restriction base="xs:string">

1200 <xs:maxLength value="256"/>

December 2007 © The Broadband Forum. All rights reserved. 93

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

CPE WAN Management Protocol v1.1

</Xs:restriction>
</xs:simpleType>
</xs:element>

TR-069 Issue 1 Amendment 2

<xs:element name="FileSize" type="xs:unsignedInt'/>

<xs:element name="TargetFileName">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="DelaySeconds" type="'xs:

<xs:element name="'SuccessURL">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name=""FailureURL">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

<!-- DownloadResponse -->
<xs:element name=""DownloadResponse'>
<xs:annotation>
<xs:documentation>DownloadResponse message
</xs:annotation>
<xs:complexType>
<XSs:sequence>
<xs:element name="Status'>
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="0">
<xs:annotation>
<xs:documentation>Download has
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="1">
<Xs:annotation>
<xs:documentation>Download has
applied</xs:documentation>
</xs:annotation>
</xs:enumeration>
</Xs:restriction>
</xs:simpleType>
</xs:element>

unsignedInt"/>

- Annex A.3.2.8</xs:documentation>

completed and been applied</xs:documentation>

not yet been completed and

<xs:element name="'StartTime" type=''xs:dateTime"/>

<xs:element name=""CompleteTime" type="'xs:

</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- Reboot -->
<xs:element name=""Reboot'>
<xs:annotation>

dateTime"/>

<xs:documentation>Reboot message - Annex A.3.2.9</xs:documentation>

</xs:annotation>
<xs:complexType>
<XSs:sequence>

<xs:element name=""CommandKey' type=""tns:CommandKeyType'/>

</Xs:sequence>
</xs:complexType>
</xs:element>

December 2007

© The Broadband Forum. All rights reserved. 94

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

1272

1273 <1-- RebootResponse -->

1274 <xs:element name="RebootResponse’>

1275 <xs:annotation>

1276 <xs:documentation>RebootResponse message - Annex A.3.2.9</xs:documentation>
1277 </xs:annotation>

1278 <xs:complexType/>

1279 </xs:element>

1280

1281

1282 <l--

1283 Optional CPE messages - Annex A.4.1

1284 -

1285 <l-- GetQueuedTransfers -->

1286 <xs:element name="GetQueuedTransfers">

1287 <xs:annotation>

1288 <xs:documentation>GetQueuedTransfers message - Annex A.4.1_1</xs:documentation>
1289 </xs:annotation>

1290 <xs:complexType/>

1291 </xs:element>

1292

1293 <!-- GetQueuedTransfersResponse -->

1294 <xs:element name=""GetQueuedTransfersResponse'>

1295 <xs:annotation>

1296 <xs:documentation>GetQueuedTransfersResponse message - Annex A.4.1.1</xs:documentation>
1297 </xs:annotation>

1298 <xs:complexType>

1299 <xs:sequence>

1300 <xs:element name="TransferList" type="tns:TransferList"/>
1301 </Xs:sequence>

1302 </xs:complexType>

1303 </xs:element>

1304

1305 <1-- Schedulelnform -->

1306 <xs:element name="Schedulelnform">

1307 <xs:annotation>

1308 <xs:documentation>Schedulelnform message - Annex A.4.1.2</xs:documentation>
1309 </xs:annotation>

1310 <xs:complexType>

1311 <xs:sequence>

1312 <xs:element name="DelaySeconds"™ type="'xs:unsignedint'/>
1313 <xs:element name=""CommandKey' type='"tns:CommandKeyType'/>
1314 </Xs:sequence>

1315 </xs:complexType>

1316 </xs:element>

1317

1318 <1-- SchedulelnformResponse -->

1319 <xs:element name="SchedulelnformResponse'>

1320 <xs:annotation>

1321 <xs:documentation>ScheduleInformResponse message - Annex A.4.1.2</xs:documentation>
1322 </xs:annotation>

1323 <xs:complexType/>

1324 </xs:element>

1325

1326 <I-- SetVouchers -->

1327 <xs:element name="SetVouchers">

1328 <xs:annotation>

1329 <xs:documentation>SetVouchers message - Annex A.4.1.3</xs:documentation>
1330 </xs:annotation>

1331 <xs:complexType>

1332 <xs:sequence>

1333 <xs:element name="VoucherList" type="tns:VoucherList"/>
1334 </xs:sequence>

1335 </xs:complexType>

1336 </xs:element>

1337

1338 <!-- SetVouchersResponse -->

1339 <xs:element name='"'SetVouchersResponse'>

1340 <xs:annotation>

1341 <xs:documentation>SetVouchersResponse message - Annex A.4.1.3</xs:documentation>
1342 </xs:annotation>

December 2007 © The Broadband Forum. All rights reserved. 95

1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<xs:complexType/>
</xs:element>

<I-- GetOptions -->
<xs:element name=""GetOptions'>
<xs:annotation>
<xs:documentation>GetOptions message - Annex A.4.1_4</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="'OptionName">
<xs:simpleType>
<xs:restriction base=''xs:string">
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- GetOptionsResponse -->
<xs:element name=""GetOptionsResponse'>
<xs:annotation>
<xs:documentation>GetOptionsResponse message - Annex A.4.1_4</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="OptionList" type="tns:OptionList"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- Upload -->
<xs:element name="Upload">
<xs:annotation>
<xs:documentation>Upload message - Annex A.4.1.5</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name=""CommandKey' type=""tns:CommandKeyType'/>
<xs:element name="FileType'>
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="64"/>
<xs:pattern value="1 Vendor Configuration File"/>
<xs:pattern value="2 Vendor Log File"/>
<xs:pattern value="X [0-9A-F]{6} .*"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="URL">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Username'>
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Password'>
<xs:simpleType>
<xs:restriction base=''xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>

December 2007 © The Broadband Forum. All rights reserved. 96

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

1414 </xs:element>

1415 <xs:element name="DelaySeconds" type='"xs:unsignedInt"/>

1416 </xs:sequence>

1417 </xs:complexType>

1418 </xs:element>

1419

1420 <!-- UploadResponse -->

1421 <xs:element name="UploadResponse'>

1422 <xs:annotation>

1423 <xs:documentation>UploadResponse message - Annex A.4.1.5</xs:documentation>
1424 </xs:annotation>

1425 <xs:complexType>

1426 <xs:sequence>

1427 <xs:element name="Status'>

1428 <xs:simpleType>

1429 <xs:restriction base='"xs:int">

1430 <xs:enumeration value="0">

1431 <xs:annotation>

1432 <xs:documentation>Upload has been completed</xs:documentation>
1433 </xs:annotation>

1434 </xs:enumeration>

1435 <xs:enumeration value="1">

1436 <xs:annotation>

1437 <xs:documentation>Upload has not yet completed</xs:documentation>
1438 </xs:annotation>

1439 </xs:enumeration>

1440 </xs:restriction>

1441 </xs:simpleType>

1442 </xs:element>

1443 <xs:element name="StartTime" type="xs:dateTime"/>

1444 <xs:element name="CompleteTime" type="xs:dateTime"/>

1445 </xs:sequence>

1446 </xs:complexType>

1447 </xs:element>

1448

1449 <l-- FactoryReset -->

1450 <xs:element name="FactoryReset'>

1451 <xs:annotation>

1452 <xs:documentation>FactoryReset message - Annex A.4.1.6</xs:documentation>
1453 </xs:annotation>

1454 <xs:complexType/>

1455 </xs:element>

1456

1457 <!-- FactoryResetResponse -->

1458 <xs:element name="FactoryResetResponse''>

1459 <xs:annotation>

1460 <xs:documentation>FactoryResetResponse message - Annex A.4.1_.6</xs:documentation>
1461 </xs:annotation>

1462 <xs:complexType/>

1463 </xs:element>

1464

1465 <I-- GetAllQueuedTransfers -->

1466 <xs:element name="GetAllQueuedTransfers">

1467 <xs:annotation>

1468 <xs:documentation>GetAl IQueuedTransfers message - Annex A.4.1.7</xs:documentation>
1469 </xs:annotation>

1470 <xs:complexType/>

1471 </xs:element>

1472

1473 <1-- GetAllQueuedTransfersResponse -->

1474 <xs:element name="GetAl lIQueuedTransfersResponse'>

1475 <xs:annotation>

1476 <xs:documentation>GetAl IQueuedTransfersResponse message - Annex A.4.1.7</xs:documentation>
1477 </xs:annotation>

1478 <xs:complexType>

1479 <xs:sequence>

1480 <xs:element name="TransferList" type="tns:AllTransferList"/>
1481 </Xs:sequence>

1482 </xs:complexType>

1483 </xs:element>

1484

December 2007 © The Broadband Forum. All rights reserved. 97

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

1485

1486 <l--

1487 ACS messages - Annex A.3.3

1488 -

1489 <l-— Inform --—>

1490 <xs:element name="Inform">

1491 <xs:annotation>

1492 <xs:documentation>Inform message - Annex A.3.3.1</xs:documentation>
1493 </xs:annotation>

1494 <xs:complexType>

1495 <xs:sequence>

1496 <xs:element name="Deviceld" type="tns:DeviceldStruct"/>
1497 <xs:element name="Event" type='tns:EventList'/>

1498 <xs:element name="MaxEnvelopes" type="xs:unsignedInt'/>
1499 <xs:element name="CurrentTime" type="'xs:dateTime'/>
1500 <xs:element name="RetryCount" type="xs:unsignedInt'/>
1501 <xs:element name="ParameterList" type="tns:ParameterValuelList"/>
1502 </Xs:sequence>

1503 </xs:complexType>

1504 </xs:element>

1505

1506 <!-- InformResponse -->

1507 <xs:element name="InformResponse’>

1508 <xs:annotation>

1509 <xs:documentation>InformResponse message - Annex A.3.3.1</xs:documentation>
1510 </xs:annotation>

1511 <xs:complexType>

1512 <xs:sequence>

1513 <xs:element name="MaxEnvelopes'" type='"'xs:unsignedInt"/>
1514 </Xs:sequence>

1515 </xs:complexType>

1516 </xs:element>

1517

1518 <l-- TransferComplete -->

1519 <xs:element name="TransferComplete'>

1520 <xs:annotation>

1521 <xs:documentation>TransferComplete message - Annex A.3.3.2</xs:documentation>
1522 </xs:annotation>

1523 <xs:complexType>

1524 <xs:sequence>

1525 <xs:element name="CommandKey' type='"tns:CommandKeyType'/>
1526 <xs:element name="FaultStruct" type="tns:FaultStruct"/>
1527 <xs:element name="StartTime" type="xs:dateTime"/>

1528 <xs:element name="CompleteTime" type="xs:dateTime"/>
1529 </xs:sequence>

1530 </xs:complexType>

1531 </xs:element>

1532

1533 <1-- TransferCompleteResponse -->

1534 <xs:element name="TransferCompleteResponse'>

1535 <xs:annotation>

1536 <xs:documentation>TransferCompleteResponse message - Annex A.3.3.2</xs:documentation>
1537 </xs:annotation>

1538 <xs:complexType/>

1539 </xs:element>

1540

1541 <!-- AutonomousTransferComplete -->

1542 <xs:element name="AutonomousTransferComplete'>

1543 <xs:annotation>

1544 <xs:documentation>AutonomousTransferComplete message - Annex A.3.3.3</xs:documentation>
1545 </xs:annotation>

1546 <xs:complexType>

1547 <xs:sequence>

1548 <xs:element name="AnnounceURL">

1549 <xs:simpleType>

1550 <xs:restriction base="xs:string">

1551 <xs:maxLength value='1024"/>

1552 </xs:restriction>

1553 </xs:simpleType>

1554 </xs:element>

1555 <xs:element name="TransferURL">

December 2007 © The Broadband Forum. All rights reserved. 98

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626

CPE WAN Management Protocol v1.1

<xs:simpleType>
<xs:restriction base='xs:string">

<Xs

:maxLength value="1024"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name=""lsDownload" type=''xs:boolean"/>
<xs:element name="FileType'">
<xs:simpleType>
<xs:restriction base='xs:string">

<Xs
<Xs
<Xs
<Xs
<Xs
<Xs

:maxLength value="64"/>

:pattern value="1 Firmware Upgrade Image'/>
:pattern value="2 Web Content'/>

:pattern value="3 Vendor Configuration File'"/>
:pattern value="4 Vendor Log File"/>

spattern value="X [0-9A-F]{6} -*"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FileSize" type="xs:unsignedInt'/>
<xs:element name="TargetFileName">
<xs:simpleType>
<xs:restriction base='xs:string">

<Xs

:maxLength value='"256"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FaultStruct” type="tns:FaultStruct'/>
<xs:element name="'StartTime" type=''xs:dateTime"/>
<xs:element name=""CompleteTime" type="'xs:dateTime"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- AutonomousTransferCompleteResponse -->
<xs:element name=""AutonomousTransferCompleteResponse'>
<xs:annotation>
<xs:documentation>AutonomousTransferCompleteResponse message - Annex

A.3.3.3</xs:documentation>

</xs:annotation>
<xs:complexType/>
</xs:element>

<1__

Optional ACS messages - Annex A.4.2

-——>
<I-- Kicked

-——>

<xs:element name="Kicked">
<xs:annotation>
<xs:documentation>Kicked message - Annex A.4.2.1</xs:documentation>
</xs:annotation>
<xs:complexType>
<Xs:sequence>
<xs:element name="Command">
<xs:simpleType>
<xs:restriction base='xs:string">

<Xs

:maxLength value="32"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Referer'>
<xs:simpleType>
<xs:restriction base=''xs:string">

<Xs

:maxLength value="64"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Arg'>
<xs:simpleType>
<xs:restriction base='xs:string">

December 2007

© The Broadband Forum. All rights reserved.

TR-069 Issue 1 Amendment 2

99

1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name=""Next''>
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value='1024"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

<!-- KickedResponse -->
<xs:element name="KickedResponse"'>
<xs:annotation>
<xs:documentation>KickedResponse message - Annex A.4.2.1</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="NextURL">
<xs:simpleType>
<xs:restriction base='xs:string">
<xs:maxLength value='1024"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- RequestDownload -->
<xs:element name="RequestDownload'>
<xs:annotation>
<xs:documentation>RequestDownload message - Annex A.4.2._.2</xs:documentation>
</xs:annotation>
<xs:complexType>
<Xs:sequence>
<xs:element name="FileType'>
<xs:simpleType>
<xs:restriction base=''xs:string">
<xs:maxLength value="64"/>
<xs:pattern value="1 Firmware Upgrade Image"/>
<xs:pattern value="2 Web Content"/>
<xs:pattern value="3 Vendor Configuration File"/>
<xs:pattern value="X [0-9A-F]{6} .*"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FileTypeArg"” type=""tns:FileTypeArg"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

<I-- RequestDownloadResponse -->
<xs:element name="RequestDownloadResponse’>
<xs:annotation>
<xs:documentation>RequestDownloadResponse message - Annex A.4.2_2</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

</xs:schema>

December 2007 © The Broadband Forum. All rights reserved. 100

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Annex B.

Removed

Annex Removed.

December 2007

© The Broadband Forum. All rights reserved.

101

Cl

C.2

C.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Annex C. Sighed Vouchers

Overview

The CPE WAN Management Protocol defines an optional mechanism for securely enabling or disabling
optional CPE capabilities. Unlike Parameters, the Voucher mechanism provides an additional layer of
security for optional capabilities that require secure tracking (such as those involving payment).

A Voucher is a digitally signed data structure that instructs a CPE to enable or disable a set of Options. An
Option is any optional capability of a CPE. When an Option is enabled, the Voucher can specify various
characteristics that determine under what conditions that Option persists.

Control of Options Using Vouchers

An Option can be disabled, enabled, or enabled with expiration. An Option that is enabled with no
expiration stays enabled until the ACS explicitly disables it. An Option that is enabled with expiration
stays enabled only for the duration specified in the Voucher. After the specified duration period, the CPE
MUST disable the Option itself.

An Option can also be defined as either transferable or non-transferable. If not otherwise specified, an
Option enabled by a Voucher is non-transferable. A non-transferable Option is automatically disabled if
the CPE becomes associated with a different broadband service provider than was in use at the time the
Option was enabled. A transferable Option is one that is maintained with the CPE regardless of any
subsequent changes of service provider.

Each Voucher, which can contain instructions to enable or disable one or more Options, MUST be digitally
signed using the XML-Signature format [15]. Before applying the instructions in the Voucher, a CPE
MUST validate the signature and authenticate the signer.

A Voucher is specific to a single CPE and cannot be used on a CPE other than the one indicated in the
Voucher. This ensures that the mechanism used to distribute Vouchers can be used to ensure that only
those CPEs that have properly appropriated an Option can enabled that Option.

A CPE supporting the use of Vouchers MUST support a network time synchronization protocol such as
NTP or SNTP to ensure access to accurate time and date information. Application of a received voucher by
the CPE, or comparison of an existing voucher against its expiration date, SHOULD only occur once the
CPE has established network time.

The following Voucher-related methods are defined in Annex A of this specification:

e SetVouchers: Allows an ACS to download a list of Vouchers to a CPE. Each Voucher MAY enable
or disable the Options defined within that VVoucher.

e GetOptions: Allows an ACS to query the state of any or all Options supported by the CPE.

Voucher Definition

The RPC method SetVouchers allows an ACS to enable, disable, or modify the state of one or more
Options. The SetVouchers method takes as an argument an array of Vouchers. Each Voucher in the array
is separately Base64 encoded.

December 2007 © The Broadband Forum. All rights reserved. 102

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

Prior to Base64 encoding, each VVoucher is a signed XML structure utilizing the XML-Signature format
[15]. Each independently signed Voucher MAY include one or more Option specifications. Each Option
specification is a structure that specifies the intended state for the specified Option.

The elements of the Option specification are defined in Table 67. An Option MAY contain additional
XML elements specific to the particular Option. An example Option specification structure is shown in
Figure 5. An example of an entire signed Voucher is shown in Figure 6. In this example, two separate
Options are enabled in the same Voucher.

Table 67 — Option specification definition

Name

Type

Description

VSerialNum

string(64)

Unique serial number identifying the particular Voucher. For a given
ACS, each new Voucher created MUST be assigned a distinct
Voucher serial number. This value MUST be unique across all CPE
managed by that ACS and all Vouchers issued to a given CPE at
different times.

Deviceld

DeviceldStruct

A structure that uniquely identifies the particular CPE for which the
Voucher is to apply. This structure is defined in Table 68.

On receipt of a Voucher, a CPE MUST ensure that the information in
the device ID matches its actual identity. If not, it MUST ignore the
Voucher and respond with a Request Denied fault.

Optionldent

string(64)

Identifying name of the particular Option to be enabled or disabled.

OptionDesc

string(256)

Text description of the Option.

StartDate

dateTime

Optional element. The date and time in UTC that the Option is to be
enabled (only meaningful if Mode = EnableWithExpiration or
EnableWithoutExpiration). If this element is not present, or if the
specified time has already passed, an Option to be enabled is
enabled immediately.

Duration

unsignedint

Required if Mode = EnableWithExpiration. For an Option enabled
with expiration, this element specifies the duration the Option will
remain enabled in units of DurationUnits. If a start date is specified,
the duration is relative to that start date.

DurationUnits

string

Required if Mode = EnableWithExpiration. This element specifies the
units in which the duration element is specified. The allowed values
are:

“Days”
“Months”

Mode

string

This element specifies whether the designated Option is to be
enabled or disabled, and if enabled, whether or not an expiration is
specified. The allowed values are:

“Disable”
“EnableWithExpiration
“EnableWithoutExpiration

Transferable

boolean

Optional element. A value of true (1) indicates that the Option is
considered transferable, meaning that Option is to remain enabled
until any specified expiration date regardless of any changes in
service provider.

If this element is false (0) or not present, the Option is considered
non-transferable, requiring the Option be disabled upon change in
service provider, associated with any change to the ProvisioningCode
as defined in [13].

Table 68 — DeviceldStruct definition

Name Type Description
Manufacturer string(64) The manufacturer of the device. This parameter is for display only and
need not be checked as part of the validation.
December 2007 © The Broadband Forum. All rights reserved. 103

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Name Type Description

oul string(6) Organizationally unique identifier of the device manufacturer. Represented
as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [9].

ProductClass string(64) Identifier of the class of product for which the serial number applies. That
is, for a given manufacturer, this parameter is used to identify the product
or class of product over which the SerialNumber parameter is unique.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

Figure 5 — Example Option specification

<dsig:Object xmlns=""" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#" 1d="option0">
<Option>
<VSerialNum>987654321</VSerialNum>
<Deviceld>
<Manufacturer>Example</Manufacturer>
<0U1>012345</0Ul>
<ProductClass>Gateway</ProductClass>
<SerialNumber>123456789</SerialNumber>
</Deviceld>
<Optionldent>Option Name</Optionldent>
<OptionDesc>0Option Description</OptionDesc>
<StartDate>20021025T12:06:34</StartDate>
<Duration>280</Duration>
<DurationUnits>Days</DurationUnits>
<Mode>EnableWithExpiration</Mode>
</Option>
</dsig:Object>

Figure 6 — Example signed Voucher

<Signature xmIns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"></Canonical izationMethod>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-
shal"></SignatureMethod>
<Reference URI="#option0">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></DigestMethod>
<DigestValue>TUuSqr2utLtQV5tY2DB1jL3nV00=</DigestValue>
</Reference>
<Reference URI="#optionl">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></DigestMethod>
<DigestValue>/YX1C/E6zNTO+w4 1G66NeXGOQBO=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>
KAMFgOSnmGH52gRVGLNFEEM4PPKRSmMMUGr2D8E3vwwiW280e1Bn5pwQ==
</SignatureValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>
/X9TgR11Ei 1S30qcLuzk5/YRt11870QAwx4/gLZRImIFXUATUFEZPY1Y+r/F9bow9s
ubVWzXgTuAHTRv8mZgt2uZUKWkn5/0BHsQIsJPu6nX/rfGG/g7V+FGqKYVDWT7g/bT
XR7DAJVUE1oWKTL2dFOuK2HXKu/y IgMZndF1Acc=
</P>
<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>

December 2007 © The Broadband Forum. All rights reserved. 104

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<G>
9+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCzOHgmdRWVeOutRZT+ZxBxCBgLRJIFN
Ej6EWOFh03zwky jMim4TwWeotUF1004KOuHiuzpnWRbgN/C/ohNWLX+2J6ASQ7zKTx
vghRkImog9/hWuWFBpKLZ16AelU1ZAFMO/7PSSo=
</G>
<Y>
TBASA/mj L 18bc2KM7u9X6nHHVjmPgZtTBhr1/Fzs2AkdYCYMwyy+v+0XU7u5e18JuK
G7/uolVhjXNSn6Z2gObF+wuMoyP/0UmNbSkdN1aRXXHPRsW2CcG3vj fV+Csg/LP3zfD
XDk ImsC8LuKXht/g4+nksA/ 31 cRQXWagQJU9pUQ=
</Y>
</DSAKeyValue>
</KeyValue>
<X509Data>
<X5091ssuerSerial>
<X5091ssuerName>

EMAILADDRESS=name@example.com,CN=Example,OU=CMS,O=Example,L=San\20Jose,

ST=California,C=US
</X5091ssuerName>
<X509SerialNumber>4</X509SerialNumber>
</X5091ssuerSerial>
<X509SubjectName>
CN=eng.bba.certs.example.com,O0U=CMS,O=Example,L=San\20Jose, ST=CA,C=US
</X509SubjectName>
<X509Certificate>
MI1EUjCCA7ugAwlBAg I BBDANBgkghk i GOWOBAQUFADCBhDELMAKGALUEBhMCVVMXEZARBgNVBAQT
CkNhbG Imb3JuaWEXETAPBgNVBACTCFNhb i BKb3N IMQ4wDAYDVQQKEWUYV21yZTEMMAOGALUECXMD
Q01TMQ4wDAYDVQQDEWUYV2lyZTEFfMBOGCSGS 1b3DQEJARYQZWJIYb3duQDJI3aXJ ILmNvbTAeFwOw
Mj ASMDUyMDU4MTZaFwOxMjASMD I yMDU4MTZaMGOxCzAJIBgNVBAYTAIVTMQswCQYDVQQIEwWJIDQTER
MA8GAL1UEBXMIU2Fu I Epvc2UxDjAVMBgNVBAOTBTJIXaXJ IMQwwCgYDVQQLEWNDTVMx I DAeBgNVBAMT
F2Vuzy5iYmEuY2VydHMuMndpcmUuY29tMI 1 BtzCCASWGBYqGSM44BAEWggEFAOGBAP1/U4EddR I p
Ut9KnC7s50F2EbdSPO9EAMMeP4C2USZpRV1AI IH7TWT2NWPq/xFWEMPbLm1Vs14E7gB00b/ImYLdr
mVCIpJ+F6AR7ECLCT7upl/63xhv401fnxqimFQ8E+4P208Uewwl1VBNaFpEy9nXzrithlyrv8ilD
GZ3RSAHHAhUAI2BQj xUjC8yykrmCouuEC/BYHPUCgYEA9+GghdabPd7LVvKtcNrhXuXmUr7veouqC
+VdMCzOHgmdRWVeOutRZT+ZxBxCBgLRJIFNE j6EwoFh03zwky jMim4TwWeotUF1004KOuHiuzpnWR
bgN/C/0hNWLXx+2J6ASQ7zKTxvghRk Imog9/hWuWFBpKLZ 16Ae1UlZAFMO/7PSSoDgYQAAOGATBAS
A/mjLI18bc2KM7u9X6nHHV jmPgZtTBhr1/Fzs2AkdYCYMwyy+v+0XU7u5e18JuKG7/uolVhjXNSn6
ZgObF+wuMoyP/0UmNbSkdN1aRXXHPRsW2CcG3vj fV+Csg/LP3zfDxDk ImsC8LuKXht/g4+nksA/3
i cRQXWagQJU9pUS jgdAwgcOwHQYDVROOBBYEFMT 1 /ebdHL jaEoSS1PcLCAdFX32gM I GbBgNVHSME
gZMwgZChgYgkgYcwgYQxCzAJBgNVBAYTAIVTMRMWEQYDVQQ IEwpDYWxpZm9Oybm I hMREwDwYDVQQH
EwhTYW4gSm9zZTEOMAWGALUEChMFMIdpcmUxDDAKBgNVBASTAONNUZEOMAWGALUEAXMFMIdpcmUx
HzAdBgkghk i GOWOBCQEWEGV icm93bkAyd2 1yZS5jb22CAQAWDgYDVROPAQH/BAQDAgeAMAOGCSqG
S1b3DQEBBQUAA4AGBAF1PGAbyVvAOp+607nXfF3jzAdoHdazh55C8s0Q9J621F8D1j 16IxR7pjcCp2
1YmMWkwQMncGTg+X8xP7B1gntDml 1YXuDT I XbyxXsu6InT7nCbJIwMw I LOXFWN+Axy7BM3NKAFESMb
aaoJWtmD1QrvcAFfDhLeBT+tlRueK7Pq9LDS
</X509Certificate>
<X509Certificate>
M1 1CeTCCAe I CAQAWDQYJKoZ I hveNAQEEBQAWGYQxCzAJIBgNVBAYTAIVTMRMWEQYDVQQ I EwpDYWxp
Zm9ybmIhMREwWDWYDVQQHEWhTYW4gSm9zZTEOMAWGALUEChMFM I dpcmUxDDAKBgNVBASTAONNUZEO
MAWGA1UEAXMFM I dpcmUxHzAdBgkghk i GOWOBCQEWEGV i cm93bkAyd2 1yZS5 jb20wHhcNMDEWNzMx
MDMwN j Q5WhcNMDcwMT I xMDMwN j Q5W j CBhDELMAKGALUEBhMCVVMXEZARBgGNVBAGTCKNhbG Imb3Ju
aWEXETAPBgNVBACTCFNhb i BKb3NIMQ4wDAYDVQQKEWUYV2 lyZTEMMAOGALUECXMDQO1TMQ4wDAYD
VQQDEwWUYV21yZTEFfMBOGCSAGS 1b3DQEJARYQZWJIyb3duQDJ3aXJILmNvbTCBnzANBgkghk iGOwOB
AQEFAAOBjQAWgYKCgYEALISJIbL610J/6SBoet3aA8Fki8s7pb/QUZueWj+0YKoDaQWh4MUCTOKO6
N/0Z2cLMVg8JyezEpdnh31VM/Ni5ow2Mst4dpdccQQEHouqwNUWIBFU196/LPRyL joM2Ne I XSKMj
AdPwvcenxmgeVBr/ZUmr4JQpdS 12AZJuHvC I jUsCAWEAATANBgkghk i GOWOBAQQFAAOBgQBa3CCX
ga9L0qrGWxpNj312Az+tYz8bpEp2e2pAVrIHdW/CIOuRIE3410TkhfYFa5CuuieF7Jcwf1B3+cGo
JrLWgeKgsNnrbmMFC/9hnrL1gZKEKi0POaGSFS/PwInodGWFZCiaQmeG+J6CWeAS 1 FMAdwgRGVESW
axfzz IKiXsXwkA==
</X509Certificate>
</X509Data>
</KeylInfo>

<dsig:Object xmlns=""" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#" 1d="option0">

<Option>

<VSerialNum>987654321</VSerialNum>

<Deviceld>
<Manufacturer>Example</Manufacturer>
<0U1>012345</0UI>
<ProductClass>Gateway</ProductClass>
<SerialNumber>123456789</SerialNumber>

</Deviceld>

<Optionldent>First option name</Optionldent>

December 2007 © The Broadband Forum. All rights reserved.

105

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

<OptionDesc>First option description</OptionDesc>
<StartDate>20021025T12:06:34</StartDate>
<Duration>280</Duration>
<DurationUnits>Days</DurationUnits>
<Mode>EnableWithExpiration</Mode>
</Option>
</dsig:Object>
<dsig:Object xmlns=""" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#" 1d="optionl">
<Option>
<VSserialNum>987654322</VSerialNum>
<Deviceld>
<Manufacturer>Example</Manufacturer>
<OUI1>00D09E</0UI>
<ProductClass>Gateway</ProductClass>
<SerialNumber>123456789</SerialNumber>
</Deviceld>
<Optionldent>Second option name</Optionldent>
<OptionDesc>Second option description</OptionDesc>
<StartDate>20021025T12:06:34</StartDate>
<Duration>280</Duration>
<DurationUnits>Days</DurationUnits>
<Mode>EnableWithExpiration</Mode>
</Option>
</dsig:Object>
</Signature>

December 2007 © The Broadband Forum. All rights reserved.

106

D.1

D.2

D.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Annex D. Web ldentity

Management

Overview

To support web-based applications or other CPE-related web pages on a back-end web site for access from
a browser within the CPE’s local network, the CPE WAN Management Protocol provides an optional
mechanism that allows such web sites to customize their content with explicit knowledge of the customer
associated with that CPE. That is, the location of users browsing from inside the CPE’s LAN can be
automatically identified without any manual login process.

The protocol defines a set of optional interfaces that allow the web site to initiate communication between
the CPE and ACS, which allows a web site in communication with that ACS to identify which CPE the
user is operating behind. This allows the web site to customize its content to be specific to the associated
broadband account, the particular type of CPE, or any other characteristic that is known to the ACS.

Note—this identification mechanism does not distinguish among different users on the same
network behind a single CPE. In situations where identification of a specific user is required, a
separate identity management mechanism, such as manual login, would be needed.

Use of the Kicked RPC Method

The CPE WAN Management Protocol defines an optional Kicked RPC method in Annex A, which can be
used to support web identity management functionality.

The CPE’s invocation of the Kicked method is initiated by an external stimulus to the CPE. This external
stimulus is assumed to be web-based, and thus the associated method provides a means to communicate
information that would be useful in a web-based transaction. A suggested definition of the stimulus
interface is given in section D.4.

The information contained in the Kicked method call includes both the information needed to uniquely
identify the CPE, but also parameters that can be used to associate the method call with a particular web
browser session.

The response to the Kicked method allows the ACS to specify a URL to which the browser SHOULD be
redirected. This URL MAY contain CGI arguments that allow the ACS to continue to track the browser
session.

Web Identity Management Procedures

The Web Identity Management mechanism is based on a model in which a web server is associated with
and can communicate with an ACS. Whenever this web server wishes to either identify the user’s CPE or
cause the CPE to establish communication with the ACS for some other purpose, the following sequence of
events will occur (under normal conditions):

1. The user’s browser accesses a web page that requires knowledge of, or communication with, the
user’s CPE.

December 2007 © The Broadband Forum. All rights reserved. 107

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

2. The web site redirects the browser to a specific URL accessible only from the CPE’s private-network
(LAN) interface through which the browser “kicks” the CPE, providing the CPE via CGI arguments
with information it needs to follow the subsequent steps (see section D.4).

3. The CPE notifies the ACS that it has been kicked, using the “Kicked” RPC method call defined in
Annex A. In this method call, the CPE identifies itself and passes information to uniquely identify the
browser session.

4. The ACS responds to this method call by passing a URL that the CPE SHOULD redirect the user’s
browser. This URL would normally include CGI arguments that identify the session state. While the
connection is open, the ACS MAY also initiate any other appropriate RPC transactions.

5. The CPE responds to the browser’s HTTP request by redirecting the browser to the URL indicated by
the ACS.

This exchange allows the ACS to uniquely identify the CPE; potentially generate a custom page based on
knowledge of the particular user, their equipment, and any associated account privileges; and then direct
the user to that customized page.

The ACS MAY also initiate any other RPC transactions that are appropriate given the particular user
action. For example, if a user requests a firmware upgrade to their CPE from a web page, the ACS could
instruct the CPE to initiate a file download over the same connection that the ACS responds to the Kicked
method call.

Figure 7 shows the sequence of events associated with this mechanism. The numbers shown correspond to
the step numbers above.

Figure 7 — Sequence of events for the “kick” mechanism

W eb Site

Access
Network

B-NT

ACS

D.4 LAN Side Interface

A CPE MAY support web identity management by providing a LAN-side web URL accessible from a
browser operating on the local network.

December 2007 © The Broadband Forum. All rights reserved. 108

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

The associated web server in the CPE SHOULD support CGI arguments to be passed to corresponding
arguments in the Kicked RPC method defined in Annex A. The RECOMMENDED arguments are listed in

Table 69.

Table 69 — Recommended CGI Arguments for the kick URL

Name

Type

Value

command

string(32)

The value to be passed in the Command argument of the Kicked
method call. This CGI argument allows the ACS to identify a command
it is to perform in response to the resulting Kicked method call.

arg

string(256)

The value to be passed in the Arg argument of the Kicked method call.
This CGI argument MAY be used by the ACS to pass arguments for
the corresponding command. The particular uses for this argument are
not defined.

next

string(1024)

The value to be passed in the Next argument of the Kicked method
call. This contains the URL the web site wishes the browser be sent
after the Kicked process has completed. The ACS processing the
Kicked method MAY override this request and return a different URL in
the Kicked response.

To initiate the kick process, the browser would be sent to the CPE’s URL, for example via an HTTP 302
redirect or via a form post. This access would include the CGI arguments as defined in Table 69. For

example, the browser might be redirected to:

http://cpe-host-name/kick.html?command=<#>&arg=<arg>&next=<url>

After the CPE receives the corresponding HTTP GET request, the CPE SHOULD initiate a Kicked
method call, using the CGI arguments to fill in the method arguments as defined in Annex A.

The CPE SHOULD limit the number of Kicked method calls it sends to the ACS per hour to a defined
maximum value. Receiving a kick request that would result in exceeding this maximum value is
considered a security violation and SHOULD NOT result in a call to the Kicked method.

December 2007

© The Broadband Forum. All rights reserved. 109

E.1l

E.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Annex E. Signhed Package Format

Introduction

This document specifies a signed package format that MAY be used to securely download files into a
recipient device. The format allows one or more files to be encapsulated within a single signed package.
The package format allows the recipient to authenticate the source, and contains instructions for the
recipient to extract and install the contents.

The signed package format is intended to be used for download from a server via HTTP, HTTPS, or FTP
file transfer, or via other means of file transfer from a remote or local source.

Signed Package Format Structure
The basic format of a signed package file is shown in Figure 8.

Figure 8 — Signed package format

Fixed length Signatures

header g
Command Payload
list files

A general description of each of the signed package format components is given in Table 70.

Table 70 — Signed package component summary

Component Description

Header The header is a fixed-length structure including a preamble, format version, and the lengths of
the command list and payload components.

Command list The command list contains a sequence of instructions to be followed in extracting and installing
the files contained within the package.

Each command is in the form of a type-length-value (TLV).

Signatures This section of the package contains a PKCS #7 digital signature block containing a set of zero
or more digital signatures as described in section E.5.

Payload files This section of the package contains one or more files to be installed following the instructions in
the command list.

This document does not define any specific payload file formats.

December 2007 © The Broadband Forum. All rights reserved. 110

E.2.1

E.3

E.4

E4.1

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Encoding Conventions

The following encoding conventions are used throughout this specification unless explicitly stated
otherwise:

e Multi-octet numeric values are encoded in network byte order (big endian format).

o File or directory path names are specified in UNIX format (e.g., “/dir/dir/base.ext”).

Header Format

The signed package header is a fixed-length 24-octet structure. The format of the header is defined in
Table 71.

Table 71 — Signed package header format

Field Type Description

Preamble 8 octets A fixed sequence of octets containing the following hexadecimal values:
3257 49 52 45 5F 53 50

An interpreter of the signed package format MUST verify that the preamble
contains exactly this sequence of values for the package to be considered valid.

Major version 32-bit integer Value indicating the major component of the package format version. An
implementation conforming to this specification has a major version of 1 (one).

Changes to the major version denote incompatible changes to this format.

Minor version 32-bit integer Value indicating the minor component of the package format version. An
implementation conforming to this specification has a minor version of 0 (zero).

Changes to the minor version denote compatible changes to the package format.
An implementation implementing this version of the specification SHOULD be
capable of interpreting packages encoded using a format with a different minor
version value.

Command list 32-bit integer Length in octets of the command list. The command list length MUST be less
length than 2*°.

Payload 32-hit integer Length in octets of the payload, including all files contained within it.

length

Command List Format
Each command in the command list has a format specified in Table 72.

Table 72 — Command format

Field Type Description
Type 32-bit integer Specifies the particular command.
Length 32-bit integer Specifies the length in octets of the Value field. The total length of the command

is Length + 8 octets.

Value (Conditional) Zero or more octets of parameters associated with the particular command type.

If a recipient of this file format finds a Type value that is unknown to it, it MUST ignore the command and
continue parsing the remainder of the package, using the Length value to skip to the next command, if any.

Command Types

The command list contains two types of commands: package parameters and actions to be taken. Examples
of package parameters include the software version of a contained software image or a timeout for the
remainder of the download. Examples of actions are add, remove, and move. The actions taken together

December 2007 © The Broadband Forum. All rights reserved. 111

CPE WAN Management Protocol v1.1

TR-069 Issue 1 Amendment 2

in the order specified in the command list define the sequence of modifications to the file system required

to extract and install the contained files.

The file-related commands have two variants: one that operates on explicit files and another that operates

on versioned files. The name of a versioned file has a fixed “base” up to 8 characters in length, and an
“extension” that is 3 characters in length. Each time the content of a versioned file is updated, the file

extension is changed to a new value that indicates the file version. Because of this, if an upgrade needs to

replace a versioned file, any existing file with the same base name but different extension MUST be
removed.

The specific commands defined by this specification are listed in Table 73.

Table 73 — Command Type summary

Type Command name

0 End

1 Extract File

2 Extract Versioned File

3 Add File

4 Add Versioned File

5 Remove File

6 Remove Versioned File

7 Remove Sub-Tree

8 Move File

9 Move Versioned File

10 Version

11 Description

12 Recoverable Timeout

13 Unrecoverable Timeout

14 Initial Timeout

15 Initial Activity Timeout

16 Reboot

17 Format File System

18 Minimum Version

19 Maximum Version

20 Role

21 Minimum Non-Volatile Storage
22 Minimum Volatile Storage Size
23 Reserved

24 Reserved

25 Required Attributes

1000- Vendor-specific commands
9999

E.4.2 End Command

This command signifies the end of the command list. This command need not be present in a command
list, but if encountered a recipient MUST stop parsing the remainder of the command list portion of the

package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value field follows.

December 2007

© The Broadband Forum. All rights reserved.

112

E.4.3

E4.4

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Extract and Add Commands

The extract and add commands include Extract File, Extract Versioned File, Add File, and Add
Versioned File.

The extract commands instruct the recipient to remove any existing file of the same name and replace it
with the specified file in the payload.

The add commands instruct the recipient to first check for an existing file of the same name, and only
install the new file if no existing file can be found.

For the versioned file variants of these commands, the above operations consider an existing file as any file
that has the same base name as the specified file. That is, the Extract Versioned File command removes all
existing files with the same base name and any extension prior to installing the new file. Similarly, the Add
Versioned File command checks for any file with the same base name as the specified file, regardless of
extension, and only installs the new file if no such file can be found.

When a new file is to be created in a directory that does not exist, the recipient MUST create the required
directory.

All of the extract and add commands include information in the Value portion of the command. The format
of this information is defined in Table 74.

Table 74 — Value format for the extract and add commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.

Path Length 32-hit integer The length of the Path field in octets.

Hash Type 32-bit integer Type of hash algorithm used in creating the Hash field. The following values are

currently defined:

1 =SHA-1. When set to this value, the Hash field contains the 20-octet SHA-1
hash of the specified file. The Hash Length value in this case MUST be set to 20
(decimal).

All other values are reserved.

Hash Offset 32-bit integer The offset in octets from the beginning of the Value field to the Hash field in this
command.
Hash Length 32-bit integer The length of the Hash field in octets.
File Offset 32-bit integer The offset in octets from the beginning of the payload portion of the package to
the beginning of the specified file.
File Length 32-bit integer The length of the file payload in octets. The actual contents of the file are found
in the file payload portion of the package.
Path String of length Path of the specified file, including the directory tree and file name.
Path Length
Hash Octet string of Hash of the payload file using the hash algorithm defined in the Hash Type field.
length Hash The hash of the payload file is included in the command because the signatures
Length validate only the package header and command list. By including the file hash in

the command, the signature ensures the validity of the file contents.

Remove Commands
The remove commands include Remove File, Remove Versioned File, and Remove Sub-Tree.

December 2007 © The Broadband Forum. All rights reserved. 113

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The Remove File command removes the file with the specified path, if it exists.

The Remove Versioned File command removes all files with the same base as the specified file, regardless
of extension.

The Remove Sub-Tree command removes all files and directories beneath and including the specified path.
All of the remove commands include information in the Value portion of the command. The format of this
information is defined in Table 75.

Table 75 — Value format for the remove commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.

Path Length 32-hit integer The length of the Path field in octets.

Path String of length Path of the specified file or directory.

Path Length

E.4.5 Move Commands
The move commands include Move File and Move Versioned File.

The Move File command renames a file to the name specified in this command. If the destination path
specified indicates a different directory, the file is moved to the indicated destination directory.

The Move Versioned File command moves a file matching the base name of the file specified in the source
path, regardless of the extension. If more than one such file exists in the specified directory, only one of
the files is moved and the others are deleted. If the versioned file extension string is a decimal number,
then the lowest numbered file is moved and the rest are deleted.

In all cases, if there is already a file with the same path as the specified destination file, the move
commands will overwrite that file.

If the source file specified in a move command does not exist, no action is taken, and the recipient
continues to process the remaining commands in the command list.

All of the move commands include information in the Value portion of the command. The format of this
information is defined in Table 76.

Table 76 — Value format for the move commands

Field Type Description

Flags 32-hit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Source Path 32-bit integer The offset in octets from the beginning of the Value field to the Source Path field
Offset in this command.

December 2007 © The Broadband Forum. All rights reserved. 114

E.4.6

E.4.7

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Field Type Description
Source Path 32-bit integer The length of the Source Path field in octets.
Length
Destination 32-bit integer The offset in octets from the beginning of the Value field to the Destination Path
Path Offset field in this command.
Destination 32-bit integer The length of the Destination Path field in octets.
Path Length
Source Path String of length Path of the source file.
Source Path
Length
Destination String of length Path of the destination to which the source file is to be moved/renamed.
Path Destination Path
Length

Version and Description Commands

The Value field for both the Version and Description commands contain a single UTF-8 string to be used
for informational, display, or logging purposes.

The Version field is intended to indicate the overall version associated with the package. For example, if
the package contains a software upgrade (which can include many individual files), the Version field MAY
be used to indicate the new software version associated with the upgrade.

Timeout Commands

The timeout commands include Initial Timeout, Initial Activity Timeout, Recoverable Timeout, and
Unrecoverable Timeout.

The timeout commands specify a timeout value for the continued download of the package file before the
download SHOULD be terminated. These commands are to accommodate the case where the command
and signature portions of the package are downloaded and interpreted prior to downloading the remainder
of the package file. The timeout commands MAY be used to control the timeout parameters associated
with a download process of this type. If the package is downloaded or received as a whole prior to
interpreting the package contents, the timeout commands MAY be ignored.

Each timeout command includes information in the Value portion of the command. The format of this
information is defined in Table 77.

Table 77 — Value format for the timeout commands

Field Type Description

Timeout 32-bit Integer The timeout value in seconds relative to the beginning of the package download
operation. A value of 0 (zero) indicates an infinite timeout.

Each of the timeout commands allows a distinct timeout value to be specified, where the Timeout field in
that command indicates the desired value. The use of each timeout value is based on the state of the
recipient as it processes commands using the state transition model shown in Figure 9. The figure shows
the state transitions that occur as each command in the command list is processed in sequence. For each
command processed, the state remains the same until one of the cases indicated by the state transition
arrows occurs.

December 2007 © The Broadband Forum. All rights reserved. 115

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Figure 9 — Download state diagram used for timeout model

Recoverable
State

Remove command
w/ Unsafe flag = 0

Install complete

Initial State

Extract, Add, Move, or Remove
w/ Unsafe flag = 1
OR Format File System

End

Unrecoverable
State

Extract, Add, Move, or Remove
w/ Unsafe flag = 1
OR Format File System

The above state diagram is used during a download to determine which timeout values to use. The
definition of each of the timeout types associated with the timeout commands is shown in Table 78.

Table 78 — Timeout command definitions

Command Description

Initial Timeout This command sets the download timeout used during the Initial State as shown in
Figure 9. This timeout is measured from the time the overall package download
began.

Initial Activity Timeout This command sets an activity timeout to be used only during the Initial State as

shown in Figure 9. The activity timeout is measured from the most recent time any
package data had been transferred to the recipient.

Note that during all states other than the Initial State, there is no activity timeout (the
activity timeout is infinite).

Recoverable Timeout This command sets the download timeout used during the Recoverable State as
shown in Figure 9. This timeout is measured from the time the overall package
download began.

Unrecoverable Timeout This command sets the download timeout used during the Unrecoverable State as
shown in Figure 9. This timeout is measured from the time the overall package
download began.

December 2007 © The Broadband Forum. All rights reserved. 116

E.4.8

E.4.9

E.4.10

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Reboot Command

This command indicates that the recipient reboot in order to complete the installation process. If used, this
command MUST be the last command in the command list (other than End, if present).

The Length parameter for this command MUST be 0 (zero), indicating that no Value field follows.

Format File System

This command indicates that the recipient reformat its file system as part of the installation process. If
used, this command implies that all existing files in the file system (or the portion of the file system
relevant for the installation process) are to be cleared and overwritten by the new files in the package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value field follows.

Minimum and Maximum Version Commands

The Minimum Version and Maximum Version commands are used to specify the range of software version
numbers for which the package is intended to apply.

When a minimum and/or maximum version number is specified in the package using these commands, the
recipient MUST NOT install the files or take any other action specified in the command list if the software
version of the recipient falls outside the indicated range.

This command MAY be used only if the format of the actual software version associated with the recipient
is in a hierarchical format that can be compared numerically given the procedures outlined below.

The minimum and maximum version commands include information in the VValue portion of the command.
The format of this information is defined in Table 79.

Table 79 — Value format for the minimum and maximum version commands

Field Type Description
Version Array of 32-bit An array of integer elements indicating the version number. This is considered a
integers hierarchical version number (e.g., “1.0.20.3"), where each successive integer
represents a more minor element of the version number.

The following procedure is used to determine if a version is within the indicated range.

If a Minimum Version is given, then for each element of the Version array, beginning with the first (most
major element):

1. If this element of the recipient’s actual version is greater than the corresponding element of the
minimum version, then the recipient’s version meets the requirement and the procedure is
complete.

2. If this element of the recipient’s actual version number is less than the corresponding element of
the minimum version, then the recipient’s version does not meet the requirement. In this case, the
procedure is complete and the recipient MUST NOT install the files in this package or follow any
of the remaining commands.

3. Otherwise (the values are equal),

a. If this is the last element in the array, then the recipient’s version meets the requirement
and the procedure is complete.

b. Otherwise (more elements remain), the procedure SHOULD continue at step 1 using the
next element of the array.

December 2007 © The Broadband Forum. All rights reserved. 117

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

If a Maximum Version is given, then for each element of the Version array, beginning with the first (most
major element):

1.

If this element of the recipient’s actual version is less than the corresponding element of the
maximum version, then the recipient’s version meets the requirement and the procedure is

complete.

If this element of the recipient’s actual version number is greater than the corresponding element
of the maximum version, then the recipient’s version does not meet the requirement. In this case,
the procedure is complete and the recipient MUST NOT install the files in this package or follow
any of the remaining commands.

Otherwise (the values are equal),

a. If this is the last element in the array, then the recipient’s version meets the requirement
and the procedure is complete.

b. Otherwise (more elements remain), the procedure SHOULD continue at step 1 using the
next element of the array.

E.4.11 Role Command

The role command is used to indicate the target application or purpose of the package. This is intended to
indicate any side effects or post-processing that might be required for a particular package.

The role commands include information in the Value portion of the command. The format of this

information is defined in Table 80.

Table 80 — Value format for the role command

Field

Type

Description

Role

32-bit integer

An enumeration indicating the target application or purpose of the package. The
following values are defined:

1 = Software upgrade

2 = Software recovery

3 =Web content

4 = Vendor configuration

Values with OxFF as their most significant octet are to be interpreted as a
vendor-specific Role. In this case, the subsequent three octets contain the OUI
(organizationally unique identifier) identifying the vendor as defined in [9]. When
this value is used, the vendor MAY define subsequent additional arguments to
be included in this command in order to specifically identify the role. Any
additional arguments are to be interpreted in a vendor-specific manner.

All other values are reserved.

E.4.12 Minimum Storage Commands

The minimum storage commands include Minimum Volatile Storage Size and Minimum Non-Volatile
Storage Size.

The minimum storage commands indicate the minimum requirement of the recipient device to be able to
install the files contained in the package. If present, each command indicates the minimum requirement for
the type of storage indicated by the command name.

If the recipient device does not meet a specified minimum requirement, the recipient MUST NOT install
any of the files in the package or continue processing commands.

The minimum storage commands include information in the Value portion of the command. The format of
this information is defined in Table 81.

December 2007

© The Broadband Forum. All rights reserved. 118

E.4.13

E.5

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 81 — Value format for the minimum storage commands

Field Type Description

Storage Size 32-bit Integer The minimum required storage in bytes of the type indicated by the command.

Required Attributes Command

The Required Attributes command is used to specify additional attributes of the recipient device that are
required in order for the package to be considered valid for installation.

One or more Required Attributes commands MAY be included in a single package, each indicating a
different class of attributes required.

The Required Attribute command includes information in the Value portion of the command. The format
of this information is defined in Table 82.

Table 82 — Value format for the required attributes command

Field Type Description

Defining Entity | 32-bit Integer Identifier indicating the definer of the Class and Attribute values used in this
command. The following values are defined:

A value of 0 (zero) indicates standard Class and Attribute definitions. Standard
definitions are those defined by this version or future versions of this
specification.

Values with OxFF as their most significant octet indicate vendor-specific Class
and Attribute definitions. In this case, the subsequent three octets contain the
OUI (organizationally unique identifier) identifying the vendor as defined in [9].

If a recipient processes a Required Attributes command with a defining entity
value that it does not recognize, it SHOULD ignore the command and continue
processing subsequent commands.

Class 32-bit Integer An enumeration indicating the criterion for which the recipient is to be compared
to determine whether or not this package is appropriate for that device. For a
given criterion, the attribute array field indicates the particular allowed values
associated with that criterion.

In this version of the specification, no standard class values are defined. For
vendor-specific defining entities, the interpretation of class values is vendor-
specific.

If a recipient processes a Required Attributes command with a class value that it
does not recognize, it SHOULD ignore the command and continue processing
subsequent commands.

Attribute Array | Array of 32-bit A variable-length array attribute, where each attribute is an enumeration of a
Integer particular allowed value for the particular class.

If actual value associated with the recipient device matches any of the values
listed in this array, then the recipient meets the specified requirement.
Otherwise, the recipient does not meet the requirement and the package MUST
NOT be installed.

In this version of the specification, no standard attribute values are defined. For
vendor-specific defining entities, the interpretation of attribute values is vendor-
specific.

Signatures

The signature section immediately follows the command list section of the package file. The signature
section consists of a digital signature block using the PKCS #7 signature syntax [16].

In particular, the signature block includes exactly one PKCS #7 SignedData object, which contains zero or
more signatures with the following constraints:

e The signatures are “external signatures,” meaning that the signed message is not encapsulated within
the SignedData object. Instead, the signed message data consists of the octet string formed by the
header and the command list components of the package.

December 2007 © The Broadband Forum. All rights reserved. 119

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

e The contentType element of the contentinfo MUST indicate type “data.”

e The content element of the contentinfo MUST be empty, since this is an external signature and the
message data resides outside the signature itself.

e The digestAlgorithm used for each signature MUST be of type SHA-1.
e The digestEncryptionAlgorithm used for each signature MUST be of type RSA.

e The Tag value indicating the Identifier associated with the overall SignedData object MUST be less
than or equal to 30, resulting in a single-octet encoding of the Identifier.

o If there are no signatures in the signature block, there would be no extended certificates or certificate
revocation lists, the SignerInfo set would be empty, and the digestAlgorithms set MAY be empty. All
the other fields in SignedData MUST be present as normal. Note that the content of an empty
signature block is independent of the content of the package and thus can be pre-computed as a fixed
sequence of bytes.

If the signature block contains more than one signature, at least one of the signatures MUST be
successfully validated for the recipient to consider the signed package as trusted.

If one or more signatures are expected by the package recipient, the recipient MUST validate the signature
or signatures prior to processing the commands contained within the command list. If none of the included
signatures are validated, the recipient MUST NOT process any of the commands in the command list or
install any of the files contained in the package.

If the recipient implementation is such that command list validation and processing might be done without
having loaded the entire package file from its source, the recipient MAY assume that the combined length
of the header, command list, and signature block is no greater than 150 kilobytes.

Note that although the sighed message data includes only the package header and command list, the
signature assures the integrity of the entire package because all commands that refer to payload files
include a hash of the file contents.

Note also that additional signatures can be added to an existing signed package file without modifying any
part of the file other than the signature block itself. The package format is structured such that the other
content (header, command list, and payload) of the package file need not change if the length of the
signature block changes.

December 2007 © The Broadband Forum. All rights reserved. 120

F.1

F.1.1

F.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Annex F. Device-Gateway
Association

Introduction

The CPE WAN Management Protocol can be used to remotely manage CPE Devices that are connected via
a LAN through a Gateway. When an ACS manages both a Device and the Gateway through which the
Device is connected, it can be useful for the ACS to be able to determine the identity of that particular
Gateway.

The procedures defined in this Annex allow an ACS to determine the identity of the Gateway through
which a given Device is connected.

As an example of when this capability might be needed, an ACS establishing QoS for a particular service
might need to provision both the Device as well as the Gateway through which that Device is connected.
To do the latter, the ACS would need to determine the identity of that particular Gateway.

The specific scenario that the defined mechanism is intended to accommodate is where both the Gateway
and Device are managed via the CPE WAN Management Protocol, and both are managed by the same ACS
(or by distinct ACSs that are appropriately coupled). Where a Device and Gateway are managed by
independent ACSs, it is assumed that there is no requirement for either ACS to be made aware of the
Device-Gateway association.

The defined mechanism relies on the Device’s use of DHCP [20]. It is expected that the vast majority of
remotely manageable Devices will use DHCP, though not necessarily all such Devices. While the
mechanism defined here for Device-Gateway association requires the use of DHCP, a Device using this
mechanism need not use DHCP for address allocation. This mechanism makes no assumptions about the
address allocated to the Device. That is, the Device might have a private or public IP address.

Terminology
The following terminology is used in this Annex.

Device CPE connected via local area network through a Gateway, bridge, or router.

Device A three-tuple that uniquely identifies a Device, which includes the manufacturer OUI,
Identity serial number, and (optionally) product class.

Gateway Internet Gateway Device.

Gateway A three-tuple that uniquely identifies a Gateway, which includes the manufacturer OUI,
Identity serial number, and (optionally) product class.

Procedures

The procedures for Device-Gateway association are summarized as follows:

o A Device following this Annex will pass its Device Identity to the Gateway via a vendor-specific
DHCP option. When the Gateway receives this information, it populates a table containing identity

December 2007 © The Broadband Forum. All rights reserved. 121

F.2.1

F.2.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

information for each Device on its LAN. This information is made available to the ACS via the
ManageableDevice table in the Gateway’s data model, defined in [24].

e Inthe DHCP responses, the Gateway provides the Device with its Gateway ldentity, which the Device
makes available to the ACS via the GatewaylInfo data object defined in [13]. The Device notifies the
ACS of changes to the contents of this object. Thus a Device connecting to a previously unknown
Gateway will result in the ACS being notified of the Gateway Identity.

e To ensure the validity of this information, which is carried over an inherently insecure DHCP
exchange, the ACS validates the Gateway Identity provided by the Device by crosschecking against
the Device ldentity provided by the Gateway.

Gateway Requirements
A Gateway conforming to this Annex MUST support the DeviceAssociation:1 profile as defined in [24].

A Gateway conforming to this Annex MUST inspect all DHCP requests received on a LAN interface and
determine if the requesting Device has included its Device Identity in the request. A DHCP request is
determined to include the Device Identity if it contains a V-1 Vendor-Specific Information DHCP Option
(option number 125, as defined in [22]) that includes the Device Identity information, as defined in section
F.2.5. The DHCP requests for which this requirement applies are DHCPDISCOVER, DHCPREQUEST,
and DHCPINFORM.

If the DHCP request is determined to include the Device Identity, then the Gateway MUST do the
following:

e The Gateway MUST include its Gateway Identity in all subsequent DHCP responses. The
Gateway ldentity is carried in the V-l Vendor-Specific Information DHCP Option (option number
125, as defined in [22]), as defined in section F.2.5. The DHCP responses for which this
requirement applies are DHCPOFFER and DHCPACK.

e On successful completion of the DHCP exchange (following the DHCPACK), if an entry with a
matching Device ldentity is not currently listed in the ManageableDevice table, then the Gateway
MUST add a new entry in its ManageableDevice table (see [24]) that includes the Device Identity
for this Device.

The Gateway MUST adhere to the following additional requirements:

e The Gateway MUST retain a Device’s entry in the ManageableDevice table as long as the Device
remains actively connected to the Gateway’s LAN.

e The Gateway MUST remove a Device’s entry when either:
0 The DHCP lease expires or is released.

0 The Gateway determines that the Device is no longer actively connected to the Gateway’s
LAN using a locally defined means of connectivity detection.

e The Gateway MUST allow the ACS to request active notification on additions or deletions to
the ManageableDevice table. If the ACS has set the Notification Attribute for the parameter
InternetGatewayDevice.ManagementServer.ManageableDeviceNumberOfEntries to Active
Notification, then the Gateway MUST notify it each time a Device entry is added or removed
using the Notification mechanism defined by the CPE WAN Management Protocol. If Active
Notification is enabled for this parameter, the Gateway MUST limit the frequency of Active
Notification resulting from changes to the number of entries in the ManageableDevice table as
specified by the value of the ManageableDeviceNotificationLimit parameter in the same object.

Device Requirements
A Device conforming to this Annex MUST support the GatewaylInfo:1 profile as defined in [13].

A Device conforming to this Annex MUST do the following:

December 2007 © The Broadband Forum. All rights reserved. 122

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

In DHCP requests, the Device MUST include a V-1 Vendor-Specific Information DHCP Option
(option number 125, as defined in [22]) that includes its Device Identity information, as defined in
section F.2.5. The DHCP requests for which this requirement applies are DHCPDISCOVER,
DHCPREQUEST, and DHCPINFORM.

If the DHCPACK message includes the Gateway lIdentity carried in the V-1 Vendor-Specific
Information DHCP Option (option number 125, as defined in [22]), as defined in section F.2.5, the
Device MUST record the received value in the Gatewaylnfo data object defined in [13]. All of the
following values MUST be recorded:

Device.GatewayInfo.ManufacturerOUI
Device.Gatewaylnfo.SerialNumber
Device.GatewaylInfo.ProductClass
The DHCP responses for which this requirement applies are DHCPOFFER and DHCPACK.

If any of the elements of the Gateway Identity are not present in the V-1 Vendor-Specific
Information DHCP Option, the Device MUST record an empty string for each such item
(replacing the previous value, if any).

For all of the parameters in the Device.GatewayInfo object, the Device MUST by default set the
Notification attribute as defined in Annex A to Active Notification. The Device MUST apply this
default whenever the URL of the ACS is set or subsequently modified. Whenever Active
Notification is enabled for these parameters, the device MUST actively notify the ACS as defined
in Annex A if the value of any of these parameters changes.

If the DHCP lease is released or expires without renewal, all entries in the GatewayInfo object
MUST be discarded (set to the empty string).

F.2.3 ACS Requirements

Whenever a Device is associated with a Gateway, the Device will notify the ACS, providing the new
Gateway ldentity information. When this occurs, the ACS SHOULD do the following:

If the ACS has previously associated the Device with a Gateway, the ACS SHOULD examine the
Gateway ldentity from the Device (from the GatewaylInfo object) and compare it to the Gateway
Identity of the prior association. If the association is unchanged, the ACS need not take any
further action.

If the Gateway Identity from the Device is different from the identity of the Gateway previously
associated with the Device, or if there was no previous Gateway association for the Device, then
the ACS SHOULD first validate the information provided by the Device, and if validated, update
the Device-Gateway association to indicate the new Gateway ldentity.

The ACS SHOULD consider the association valid only if all elements of the Device Identity
match the Device ldentity elements in at least one entry in the ManageableDevice table of the
indicated Gateway (see [24]). The ACS would determine the current contents of the Manageable-
Device table either by contacting the Gateway using a Connection Request to read the table, or
receiving Active Notifications on additions and deletions to this table (by the ACS having
previously requested Active Naotifications on the ManageableDeviceNumberOfEntries parameter).

December 2007 © The Broadband Forum. All rights reserved. 123

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

F.2.4 Device-Gateway Association Flows

Figure 10 shows the flow associated with the procedures for Device-Gateway association, where the
Device uses a DHCP Discover message to initiate the association as part of DHCP address allocation.

Device Gateway ACS

DHCP Discover (device identity)

T T
| |
| |
| |
| |
| |
> I
I I
DHCP Offer (gateway identity) | |
A I l
| DHCP Request (device identity) | |
I A l
| |
! : Add device record to |
: : ManageableDevice table :
| |
: DHCP Ack (gateway identity) : :
A i l
| | |
| ! |
I TR-069 Inform (device + gateway identity) I
I I >
| ! |
| TR-069 Inform Response |
N 1 1
I I I
I I Establish TR-069 Session I
| | [
| D 2
| | . |
: : Get ManageableDevice table (TR-069) : Optional
! :é_____"'"""_""""': Cross-
I I I Check
i [
[

Figure 10 — Device-Gateway Association using DHCP Discover

December 2007 © The Broadband Forum. All rights reserved. 124

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The use of DHCP does not dictate that the device use DHCP for address allocation. If the Device obtains
IP addressing parameters using other means, the device would use a DHCP Inform for the exchange of
information with the Gateway. The flow for this case is show in Figure 11.

Device Gateway ACS

]
|
DHCP Inform (device identity) :

A

Add device record to
ManageableDevice table

DHCP Ack (gateway identity)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
|
|

N
|
l
: TR-069 Inform (device + gateway identity)
]
| |
! TR-069 Inform Response
i< [
I l
: : Establish TR-069 Session
[Kem—mmm o m e
I l
: : Get ManageableDevice table (TR-069) Optional
: S 1 Cross-
I Check
|
I
|
I

Figure 11 — Device-Gateway Association Using DHCP Inform

F.2.5 DHCP Vendor Options

The Device Identity and Gateway Identity information exchanged via DHCP MUST be contained within
the V-1 Vendor-Specific Information DHCP Option, which is option number 125, as defined in [22]. This
DHCP option is defined to allow vendor-specific information from multiple distinct organizations, where
the specific organization is explicitly identified via an IANA Enterprise Number.

For DHCP messages that contain Device Identity or Gateway Identity information, the V-1 Vendor-Specific
Information DHCP Option MUST include an element identified with the IANA Enterprise Number for the
Broadband Forum that follows the format defined below. The IANA Enterprise Number for the Broadband
Forum is 3561 in decimal (the “ADSL Forum” entry in the IANA Private Enterprise Numbers registry
[18]).

Each vendor-specific element within this DHCP Option is defined to contain a series of one or more
Encapsulated Vendor-Specific Option-Data fields, encoded as specified in [22]. Each such field includes a
Sub-Option Code, a Sub-Option Length, and Sub-Option Data. The values for these elements defined in
this Annex are listed in Table 83.

December 2007 © The Broadband Forum. All rights reserved. 125

F.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Table 83 — Encapsulated Vendor-Specific Option-Data fields

Encapsulated Option Sub-Option | Source Source Parameter*?
Code Entity
DeviceManufacturerOUI 1 Device Device.Info.Manufactureroul*®
DeviceSerialNumber 2 Device Device.Info.SerialNumber™
DeviceProductClass 3 Device Device.Info.ProductClass™
GatewayManufacturerOUI 4 Gateway InternetGatewayDevice.Devicelnfo.ManufacturerOUl**
GatewaySerialNumber 5 Gateway InternetGatewayDevice.Devicelnfo.SerialNumber™
GatewayProductClass 6 Gateway InternetGatewayDevice.Devicelnfo.ProductClass™

In encoding the source parameter value in the corresponding Sub-Option Data element, the resulting string
MUST NOT be null terminated.

For a DHCP request from the Device that contains the Device Identity, the DHCP Option MUST contain
the following Encapsulated Vendor-Specific Option-Data fields:

e DeviceManufacturerOUI
o DeviceSerialNumber
e DeviceProductClass (this MAY be left out if the corresponding source parameter is not present)

For a DHCP response from the Gateway that contains the Gateway ldentity, the DHCP Option MUST
contain the following Encapsulated VVendor-Specific Option-Data fields:

e GatewayManufacturerOUI
e GatewaySerialNumber

e GatewayProductClass (this MAY be left out if the corresponding source parameter is not present)

Security Considerations
While this Annex was designed to provide a high degree of security, some known vulnerabilities remain:

e While the mechanism to allow the ACS to validate the identity information provided to it by the
Device is optional, it is strongly encouraged that this validation be implemented. The use of this
validation is the only means within the context of this Annex to overcome the lack of an inherent
integrity checking mechanism in the DHCP exchange between the Device and Gateway. By using
this validation, attempts to tamper with the identity information of either the Device or Gateway
can be detected by the ACS.

e The condition for validation of the Device-Gateway association is that the Device can
communicate over the LAN to the Gateway and that the Device and Gateway can authenticate
themselves via the CPE WAN Management Protocol to the ACS. The possibility exists that a
valid Device not present on a Gateway’s LAN could falsify its association with a Gateway by
providing a communication path between the Device and the Gateway’s LAN. For example, a
Device could establish a communication path to a server, which in turn communicates with a
Trojan horse application on the target LAN, which acts as a proxy for the Device. Providing such
a path could make the Device indistinguishable from one physically connected to the LAN. To
mitigate this possibility, the Gateway can optionally provide mechanisms to allow the user to
monitor and regulate what devices are present on the LAN.

12 The value of the corresponding Sub-Option Data element is obtained from the specified parameter value.
3 As defined in [13].
 As defined in [24].

December 2007 © The Broadband Forum. All rights reserved. 126

G.1

G.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Annex G. Connection Request via
NAT Gateway

Introduction

The CPE WAN Management Protocol can be used to remotely manage CPE Devices that are connected via
a LAN through a Gateway. When an ACS manages a Device connected via a NAT Gateway (where the
Device has been allocated a private IP address), the CPE WAN Management Protocol can still be used for
management of the Device, but with the limitation that the Connection Request mechanism defined in
section 3.2.2 that allows the ACS to initiate a Session cannot be used.

The procedures defined in this Annex allow an ACS to initiate a Session with a device that is operating
behind a NAT Gateway. This provides the equivalent functionality of the Connection Request defined in
section 3.2.2, but makes use of a different mechanism to accommodate this scenario.

The mechanism defined in this Annex does not assume that the Gateway through which the Device is
connected supports the CPE WAN Management Protocol. This mechanism requires support only in the
Device and the associated ACS.

Procedures

To accommodate the ability for an ACS to issue the equivalent of a Connection Request to CPE allocated a
private address through a NAT Gateway that might not be CPE WAN Management Protocol capable, the
following is required:

e The CPE MUST be able to discover that its connection to the ACS is via a NAT Gateway that has
allocated a private IP address to the CPE.

e The CPE MUST be able to maintain an open NAT binding through which the ACS can send
unsolicited packets.

e The CPE MUST be able to determine the public IP address and port associated with the open NAT
binding, and communicate this information to the ACS.

To accomplish the above items, this Annex defines a particular use of the STUN mechanism, defined in
RFC 3489 [21].

The use of STUN for this purpose requires that a new UDP-based Connection Request mechanism be
defined to augment the existing TCP-based Connection Request mechanism defined in section 3.2.2.

The procedures for making use of STUN to allow the use of UDP Connection Requests to a CPE are
summarized as follows:

e The ACS enables the use of STUN in the CPE (if it is not already enabled by factory default) and
designates the STUN server for the CPE to use.

e The CPE uses STUN to determine whether or not the CPE is behind a NAT Gateway with a
private allocated address.

December 2007 © The Broadband Forum. All rights reserved. 127

G.21

G211

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

o If the CPE is behind a NAT Gateway with a private allocated address, the CPE uses the
procedures defined in STUN to discover the binding timeout.

e The CPE sends periodic STUN Binding Requests at a sufficient frequency to keep alive the NAT
binding on which it listens for UDP Connection Requests.

e When the CPE determines the public IP address and port for the NAT binding on which it is
listening for UDP Connection Requests, and whenever it subsequently changes, the CPE
communicates this information to the ACS. Two means are provided by which the ACS, at its
discretion, can obtain this information—either from information provided in the STUN Binding
Request messages themselves, or via Notification on changes to the
UDPConnectionRequestAddress parameter, which the CPE will update to include the public
Connection Request address and port.

o Whenever the ACS wishes to establish a connection to the CPE, it can send a UDP Connection
Request to the CPE. To accommodate the broadest class of NAT Gateways, this will be sent from
the same source address and port as the STUN server.

CPE Requirements

A CPE conforming to this Annex MUST support the UDPConnReq :1 profile as defined in [24] if the CPE
is an Internet Gateway Device, or as defined in [13] if the CPE is any other type of Device.

Whenever the STUNEnable parameter in the ManagementServer object is set to true, CPE following the
requirements of this Annex MUST make use of the procedures defined in STUN [21] to determine whether
or not address and/or port translation is taking place between the CPE and the STUN server. If address
and/or port translation is taking place, the CPE MUST:

e Determine the public IP address and port for the NAT binding on which it is listening for UDP
Connection Request messages.

o Discover the NAT binding timeout, and send STUN Binding Request messages at a rate necessary
to keep alive this binding.

o Indicate via STUN optional attributes on which binding it is listening for UDP Connection
Requests, and if the binding has recently changed. Also, update the UDPConnectionRequest-
Address parameter to indicate the current public IP address and port associated with the binding.

e Listen for UDP Connection Request messages, and act on these messages when they arrive.
The details of each of these functions are defined in the following sections.

Note — While the CPE requirements defined here certainly apply to a Device connected via LAN to a
Gateway, the same procedures can be followed by a Gateway, which might be operating behind a
network-based NAT gateway. Thus the requirements are defined generically for CPE, which might be
either a Device or Gateway.

Binding Discovery

When STUN is enabled via the STUNEnable parameter in the ManagementServer object, the CPE MUST
send Binding Request messages to the STUN server designated in the STUNServerAddress and
STUNServerPort parameters, as defined in [21]. 1f no STUNServerAddress is given, the address of the
ACS determined from the host portion of the ACS URL MUST be used as the STUN server address.

For the purpose of binding discovery, Binding Requests MUST be sent from the source address and port on
which the CPE will be listening for UDP Connection Requests if it determines that address and/or port
translation is in use (Binding Requests for binding timeout discovery, will be sent from a different port as
described in section G.2.1.2).

The basic Binding Request message allows the CPE to determine if address and/or port translation is in use
between the CPE and the STUN server. This is determined by comparing the source address and port on

December 2007 © The Broadband Forum. All rights reserved. 128

G.21.2

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

which the request was sent to the MAPPED-ADDRESS attribute received in a response from the STUN
server. If either the address or port is different, then translation is in use.

If it is determined that address and/or port translation is in use, the CPE MUST record the value of the
MAPPED-ADDRESS attribute in the most recently received Binding Response. This represents the public
IP address and port to which UDP Connection Requests would be sent.

Each time the CPE subsequently sends a Binding Request for the purpose of maintaining the binding (see
G.2.1.2), the CPE MUST again determine if address and/or port translation is in use, and if so, obtain the
public IP address and port information from the MAPPED-ADDRESS attribute in a successful Binding
Response. The actions the CPE will take when this information changes are defined in section G.2.1.3.

If the CPE has been provisioned with a STUNUsername and STUNPassword in the ManagementServer
object, then if the CPE receives a Binding Error Response from the STUN server with a fault code of
401 (Unauthorized), then the CPE MUST resend the Binding Request with the USERNAME and
MESSAGE-INTEGRITY attributes as defined in [21]. Whenever a Binding Request is sent that includes
the MESSAGE-INTEGRITY attribute, the CPE MUST discard a corresponding Binding Response if the
MESSAGE-INTEGRITY attribute in the Binding Response is either invalid, as defined in [21], or is not
present.

If the local IP address allocated to the CPE changes, the CPE MUST re-discover the binding using the
procedures described above. The minimum limit on the Binding Request period defined by STUN-
MinimumKeepAlivePeriod does not apply in this case.

Other than Binding Request messages sent explicitly in response to a Binding Error Response from the
STUN server with a fault code of 401 (Unauthorized), the CPE MUST NOT include the MESSAGE-
INTEGRITY attributes in any Binding Request.*®

The STUN client in the CPE need not support the CHANGE-REQUEST attribute of STUN Binding
Requests, nor need it understand the CHANGED-ADDRESS, SOURCE-ADDRESS, and REFLECTED-
FROM attributes present in a Binding Response.™®

The STUN client in the CPE need not support the STUN messages for exchanging a Shared Secret. None
of these messages are used in the application defined in this Annex.

Maintaining the Binding
To keep alive the NAT binding, the CPE MUST periodically retransmit Binding Request messages from
the source address and port on which the CPE will be listening for UDP Connection Requests.

The CPE MUST NOT send these Binding Requests more frequently than is specified by the STUN-
MinimumKeepAlivePeriod parameter in the ManagementServer object.

The CPE MUST send these Binding Requests at least as frequently as is specified by the STUNMaximum-
KeepAlivePeriod parameter in the ManagementServer object, if a value is specified.

If the value of STUNMinimumKeepAlivePeriod and STUNMaximumKeepAlivePeriod are not equal, then
the CPE MUST actively discover the longest keep-alive period for which the NAT binding is maintained.
To do this, the CPE MUST use the procedures described generally in [21] to learn the binding timeout.
Specifically, the CPE MUST be able to test whether the binding has timed out by sending Binding
Requests from a secondary source port distinct from the primary source port, and use the RESPONSE-
ADDRESS attribute in the Binding Request to indicate that the STUN Binding Response be sent to the
primary source port (the port on which the CPE is listening for UDP Connection Request messages).

15 Because the STUN specification requires the STUN server to use message integrity in its response if
message integrity was used in the request, the CPE cannot use message integrity for Binding Requests on
its own, but only when so directed by the STUN server. This is to ensure that the server has total
discretion as to when and whether message integrity is to be used.

18 These attributes are primarily intended to allow discovery of the type of NAT in use, which is not
required for this Annex.

December 2007 © The Broadband Forum. All rights reserved. 129

G.21.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The specific procedures by which the CPE uses Binding Requests from the secondary source port to
determine the binding timeout is left to the discretion of the CPE vendor. In general, the procedure would
consist of two phases: a discovery phase, and a monitoring phase. During the discovery phase, the CPE is
attempting to learn the value of the binding timeout, and would test different timeout values to determine
the actual timeout value (for example, using a binary search). During the monitoring phase, the CPE would
periodically test the binding prior to refreshing it to determine if the binding is still in place. If not, the
CPE could then revert to the discovery phase to determine a new value for the binding.

The minimum limit on the Binding Request period defined by STUNMinimumKeepAlivePeriod does not
apply to Binding Requests sent from a secondary source port.

Communication of the Binding Information to the ACS

Two means are defined by which the ACS can be informed of the binding information. The CPE MUST
support both methods.!” The first method involves the use of optional STUN attributes sent in the Binding
Requests. The second method involves the CPE updating the value of the UDPConnectionRequestAddress
parameter as the binding information changes.

Table 84 specifies a set of STUN attributes are defined for this application. These use Attribute Type
values that are greater than Ox7FFF, which the STUN specification defines as “optional.” STUN servers
that do not understand optional attributes, are required to ignore them.

Table 84 — Optional STUN attributes used in Binding Request messages

Attribute Type Name Description

0xC001 CONNECTION-REQUEST-BINDING Indicates the binding on which the CPE is listening for
UDP Connection Requests.

The content of the Value element of this attribute MUST
be the following byte string:

0x64 0x73 Ox6C 0x66
Ox6F 0x72 0x75 0x6D
OX2E Ox6F 0x72 0x67
Ox2F 0x54 0x52 0x2D
0x31 0x31 0x31 0x20
This corresponds to the following text string:*®
“dslforum.org/TR-111"

A space character is the last character of this string so
that its length is a multiple of four characters.

The Length element of this attribute MUST equal:
0x0014 (20 decimal)

0xC002 BINDING-CHANGE Indicates that the binding has changed.

This attribute contains no value. Its Length element
MUST be equal to zero.

This attribute MUST only be used where the
CONNECTION-REQUEST-BINDING is also included.

7 Defining two methods allows flexibility by the ACS in making the tradeoffs between these two
approaches. Specifically, the STUN-based approach may require a tighter coupling between the ACS
itself and the associated STUN server, while the Notification-based approach may result in greater
communication overhead.

18 This text string is used to allow an observer, including the NAT Gateway itself, to identify that these
STUN messages represent UDP Connection Request bindings associated with this specification. A
Gateway might use this knowledge to optimize the associated performance. For example, a Gateway
could lengthen the UDP timeout associated with this binding to reduce the frequency of binding updates.

December 2007 © The Broadband Forum. All rights reserved. 130

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

A CPE MUST include the CONNECTION-REQUEST-BINDING attribute in every Binding Request
message whose source address and port are the address and port on which it is listening for UDP
Connection Request messages. In all other Binding Request messages, the CPE MUST NOT include this
attribute.

In every Binding Request message sent in which the CPE includes the CONNECTION-REQUEST-
BINDING attribute, if the value of the STUNUsername parameter in the ManagementServer object is non-
empty, the CPE MUST include the USERNAME attribute set to the value of the STUNUsername
parameter, if necessary padded with trailing spaces to make its length a multiple of 4 bytes (as required by
the STUN protocol).

Whenever the CPE detects a change to the NAT binding (as well as the first time the CPE determines the
binding), it MUST immediately send a Binding Request message from the primary source port (the port on
which the CPE is listening for UDP Connection Request messages) that includes the BINDING-CHANGE
attribute. This Binding Request MUST NOT include the RESPONSE-ADDRESS or CHANGE-
REQUEST attributes. In all other Binding Request messages, the CPE MUST NOT include the BINDING-
CHANGE attribute. The minimum limit on Binding Request period defined by STUNMinimumKeep-
AlivePeriod does not apply to Binding Requests that include the BINDING-CHANGE attribute.

For Binding Requests that include the BINDING-CHANGE attribute, the CPE MUST follow the
retransmission procedures define in [21] to attempt to ensure the successful reception. If, following these
retransmission procedures, the CPE determines that the Binding Request has failed, it MUST NOT make
further attempts to send Binding Requests that include the BINDING-CHANGE attribute (until the binding
subsequently changes again).

When the CPE determines that address and/or port mapping is in use, and whenever the CPE determines
that the binding has changed (as well as the first time the CPE determines the binding), the CPE MUST
update the value of the UDPConnectionRequestAddress parameter in the ManagementServer object.
Specifically:

e The Host portion of the UDPConnectionRequestAddress MUST be set to the current public IP
address for the binding associated with the UDP Connection Request as determined from the most
recent binding information.

e The Port portion of the UDPConnectionRequestAddress MUST be set to the current public port
for the binding associated with the UDP Connection Request as determined from the most recent
binding information.

When the CPE determines that address and/or port mapping is in use, the CPE MUST also set the
NATDetected parameter in the ManagementServer object to true.

If the ACS has set the Notification attribute on the UDPConnectionRequestAddress parameter to Active
Notification, then whenever the binding information has changed, the CPE MUST establish a connection to
the ACS and include the UDPConnectionRequestAddress in the Inform message, as defined in Annex A.

When the UDPConnectionRequestAddress is changed, if the time since the most recent Notification on a
change to the UDPConnectionRequestAddress is less than the value of UDPConnectionRequestAddress-
NotificationLimit, the Notification MUST be delayed until the specified minimum time period is met.

Note — In addition to the specified minimum notification period, the CPE MAY use its discretion to
delay notifying the ACS of updated binding information in order to avoid excessive notifications. Such
a delay would only be used if the CPE is confident that the binding is likely to change again within a
brief period. For example, during active discovery of the binding timeout it is reasonable to expect
frequent binding changes. Similarly, a CPE might be able to detect that a security attack is causing
frequent binding changes, and limit the number of notifications until the attack ceases.

If the CPE determines that neither address nor port mapping are in use, then the CPE MUST indicate this to
the ACS by setting the NATDetected parameter to false, and setting the UDPConnectionRequestAddress
such that the Host and Port are the local IP address and port on which the CPE is listening for UDP
Connection Request messages.

December 2007 © The Broadband Forum. All rights reserved. 131

G214

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

UDP Connection Requests

A CPE conforming to this Annex MUST listen for UDP Connection Request messages on the port that it
has designated for this purpose. This MUST be true whether or not the CPE has detected address or port
translation in use, and whether or not the use of STUN is enabled.

Note — a CPE MUST also continue to listen for TCP-based Connection Requests as defined in section
3.2.2.

The format of the UDP Connection Request message is defined in section G.2.2.3. When the CPE receives
a UDP Connection Request message, it MUST both authenticate and validate the message.

A UDP Connection Request message is valid if and only if the following requirements are met:
e It MUST NOT violate any requirements specified in [5] for an HTTP 1.1 request message.
e The Method given in the Request Line MUST be “GET".

e The Timestamp given by the value of the “ts” query string argument MUST be strictly greater
than the Timestamp value for the UDP Connection Request message that had been most
recently received, validated, and authenticated.

To allow the above comparison to be made, the CPE MUST maintain a persistent record of
Timestamp value of the most recent UDP Connection Request that was successfully validated
and authenticated (except across CPE reboots). The Timestamp value for any UDP Connection
Request message that fails to be validated or authenticated MUST NOT be recorded. The CPE
MAY maintain a record of this most recent Timestamp across CPE reboots. If the CPE does not
maintain this value across reboots, then immediately following the reboot the value zero MUST
be used.

The CPE MAY place stricter requirements on the Timestamp than stated above. The CPE
MAY, for example, additionally verify that the Timestamp is within a time window relative to
its understanding of the current time. If a CPE chooses to do this, it SHOULD avoid making the
time window too narrow, in order to allow for a reasonable margin of error in both the CPE and
ACS.

e The Message ID given by the value of the “id” query string argument MUST be distinct from
that of the UDP Connection Request message that had been most recently received, validated,
and authenticated.

e The Username given by the value of the “un” query string argument MUST match the value of
the parameter Device.ManagementServer.ConnectionRequestUsername.

A UDP Connection Request message is authenticated if and only if the following requirements are met:

e The Signature given by the value of the “sig” query string argument MUST match the value of
the signature locally computed by the CPE following the procedure specified in section G.2.2.3
using the local value of the parameter Device.ManagementServer.ConnectionRequestPassword.

Whenever a CPE receives and successfully authenticates and validates a UDP Connection Request, it
MUST follow the same requirements as for a TCP-based Connection Request that are defined in section
3.2.2.

The CPE MUST ignore a UDP Connection Request that is not successfully authenticated or validated.

The CPE MUST ignore the content of any non-empty Message Body that might be present in the UDP
Connection Request (this allows the possibility of the use of a non-empty message body in a future version
of this protocol).

Because STUN responses and UDP Connection Requests will be received on the same UDP port, the CPE
MUST appropriately distinguish STUN messages from UDP Connection Requests using the content of the
messages themselves. As the first byte of all STUN messages defined in [21] is either 0 or 1, and the first

byte of the UDP Connection Request is always an ASCII encoded alphabetic letter, the CPE MAY use this
distinction to distinguish between these messages.

December 2007 © The Broadband Forum. All rights reserved. 132

G.2.2

G221

G.2.2.2

G.2221

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see [17]), and the CPE
MAY use this port for UDP Connection Requests.

ACS Requirements

An ACS following the requirements of this Annex MUST be associated with a STUN server that follows
the requirements defined in this section.

STUN Server Requirements

The STUN server MUST conform to all of the requirements defined in [21], with the following exceptions,
which the STUN server MAY choose not to implement.

e The STUN server need not support the Shared Secret exchange mechanism defined in [21]. If
message integrity is used, the shared secrets MUST be statically provisioned, and correspond to
the STUNUsername and STUNPassword parameters in the ManagementServer object in the CPE.

e The STUN server need not support a secondary source IP address or port for sending Binding
Responses (A2/P2). If it does not, the CHANGED-ADDRESS attribute SHOULD be filled in
with the primary address and port (A1/P1), and the STUN server MAY ignore the CHANGE-
REQUEST attribute if received in a Binding Request.

The STUN server MAY require message integrity for any received Binding Requests of its choosing by
responding to the request with a Binding Error Response with fault code 401 (Unauthorized).

Determination of the Binding Information

The ACS can choose either of the two defined mechanisms to determine the current binding information
from a CPE.

STUN-based Approach

If the ACS chooses to use the attributes received by the STUN server, it SHOULD set a non-empty
STUNUSsername and STUNPassword in the ManagementServer object of each CPE. The STUNUsername
MUST be unique among all CPE managed by the corresponding ACS to ensure that the CPE can be
distinguished. The STUNPassword SHOULD be unique among all CPE managed by the corresponding
ACS, and SHOULD follow the password strength guidelines specified in [21].

Whenever the STUN server receives a Binding Request that includes both the BINDING-CHANGE and
CONNECTION-REQUEST-BINDING attributes:

e The STUN server SHOULD respond with a Binding Error Response with fault code 401
(Unauthorized) in order to force the CPE to retransmit the Binding Request with message integrity
included.

e When the STUN server receives the retransmitted request with message integrity, it SHOULD
authenticate the requester. This would likely involve communication between the STUN server
and ACS if they were not implemented as a single entity.

e If the authentication fails, the STUN server MUST respond with a Binding Request Error as
defined in [21] and take no further action.

o If the authentication is successful, the STUN server SHOULD extract the source IP address and
port from the Binding Request message, and record these as the new IP address and port to be
used for UDP Connection Requests. Depending on the implementation, this might involve the
STUN server informing the ACS of the IP address and port along with the corresponding
STUNUsername, from which the ACS would then record this information for the CPE
corresponding to that STUNUsername.

December 2007 © The Broadband Forum. All rights reserved. 133

G.22.22

G.223

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

e The STUN server SHOULD perform the above only once for a given Transaction ID in the
Binding Request. Redundant copies of the Binding Request with the same Transaction 1D
SHOULD be ignored.

Using this approach, the STUN server MAY choose not to require message integrity or authenticate any
Binding Requests other than those for which it follows the above procedures to determine the binding
information.

The ACS MAY determine the current binding at any time even if no change was notified by following the
above procedure on any received Binding Request for which the CONNECTION-REQUEST-BINDING
attribute is present. The required presence of the USERNAME attribute in these Binding Requests allows
the ACS to tentatively determine the CPE’s identity prior to subsequent authentication. This allows an
ACS to periodically verify the binding information to ensure that it is up-to-date in case explicit indications
of a binding change had failed to reach the ACS.

If the ACS determines that the CPE is no longer behind a NAT that is doing address or port mapping, the
ACS MAY use TCP-based Connection Requests as defined in section 3.2.2.

Notification-based Approach

If the ACS chooses to use Active Natification on the UDPConnectionRequestAddress parameter, it
SHOULD do the following:

o Set the Notification attribute for the UDPConnectionRequestAddress parameter to Active
Notification.

e Record changes to the UDPConnectionRequestAddress parameter whenever this parameter is
included in the Inform message, and use the most recently recorded value to determine the
destination of UDP Connection Request messages. Specifically, the destination IP address for
UDP Connection Request messages is determined from the “host” portion of this parameter, and
the destination port is determined from the “port” portion of this parameter. If the host is given as
a domain name, the ACS MUST use DNS to determine the associated IP address. If the port is not
explicitly given in the UDPConnectionRequestAddress parameter, port 80 MUST be used as the
default value.

o Observe the value of the NATDetected parameter (either by reading it when UDPConnection-
RequestAddress changes, or by enabling Active Notification on this parameter as well).
Whenever this parameter is false, the ACS MAY use TCP-based Connection Requests as defined
in section 3.2.2.

Using this approach, the ACS MAY choose not to require message integrity or authenticate any STUN
Binding Requests, since these requests are not used to convey information to the ACS. In this case, the
ACS need not set a STUNUsername or STUNPassword in the CPE.

UDP Connection Requests
The ACS MUST send UDP Connection Request messages from the same source IP address and port as the
STUN server.

A UDP Connection Request message MUST be transmitted within a single UDP packet sent to the IP
address and port determined by the ACS as described in section G.2.2.2.

The ACS SHOULD send multiple copies of the same UDP Connection Request message in order to reduce
the likelihood that the message is lost due to packet loss. When an ACS sends multiple copies of the same
UDP Connection Request, the content of the message (including the message ID, timestamp, and cnonce,
as defined below) MUST be identical for each successive copy.

There is no response message associated with a UDP Connection Request message.

December 2007 © The Broadband Forum. All rights reserved. 134

G.2.3

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

The format of the UDP Connection Request message is derived from the format of an HTTP 1.1 [5] GET
message, though the HTTP 1.1 protocol itself is not used. Specifically, the UDP Connection Request
message MUST conform to the following requirements:

e It MUST be avalid HTTP 1.1 GET message as defined in [5].
e It MUST contain no Message Body.

e |fa Content-Length header is present, its value MUST be zero.
e The Method given in the Request Line MUST be “GET".

e The Request-URI given in the Request Line MUST be an Absolute-URI according to the rules
defined in [12]. The URI MUST be formed as follows:

0 The Scheme portion of the URI MUST be “http” or “HTTP”.

0 The Authority portion of the URI MUST be as specified in [10]. The ACS MAY set this
to the value of Device.ManagementServer.UDPConnectionRequestAddress, if it is
known. Otherwise, the ACS MUST derive this string from the actual destination IP
address and port to which the UDP Connection Request message will be sent. The “port”
portion of this string MUST be present unless the destination port number is “80”.

0 The Path portion of the URI MUST be empty.

0 The Query portion of the URI MUST contain a query string encoded as defined by the
“application/x-www-form-urlencoded” content type defined in [23]. The query string
MUST contain the following name-value pairs:

Name Value

ts Timestamp. The number of seconds since the Unix epoch until the time the
message is created (the standard Unix timestamp).

id Message ID. An unsigned integer value that MUST be set to the same value for
all retransmitted copies of the same UDP Connection Request. The value MUST
change between successive distinct UDP Connection Requests.

un Username. The value of the parameter Device.ManagementServer.Connection-
RequestUsername as read from the CPE.

cn Cnonce. A random string chosen by the ACS.

sig Signature. Formed from the 40-character hexadecimal representation (case

insensitive) of HMAC-SHA1 (Key, Text) [19], where:

. Key is the value of the parameter Device.ManagementServer.Connection-
RequestPassword as read from the CPE.

e Textis a string formed by concatenating the following elements (in the order
listed, with no spaces between items):

o The value of the ts (Timestamp) element
o The value of the id (Message ID) element
o The value of the un (Username) element

o The value of the cn (Cnonce) element

Below is an example Request-URI:

http://10.1.1.1:8080?ts=1120673700&1d=1234&un=CPE57689
&cn=XTGRWIPC6D31PXS3&sig=3545F7B5820D76A3DF45A3A509DA8D8C38F13512

Message Flows

The following figures show example message flows associated with the procedures defined in sections
G.2.1 and G.2.2 to support Connection Requests to devices behind a NAT gateway.

In all of the examples, the address/port pairs use the notation (A, P), where A is the IP address and P is the
port. In the examples, the CPE uses (A1, P1) as its primary port (the port on which the CPE is listening for

December 2007 © The Broadband Forum. All rights reserved. 135

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

UDP Connection Request messages) and (A1, P2) is its secondary port (used for binding timeout
discovery). When passing through a NAT Gateway, these addresses are translated to (A1, P1") and

(AL, P2Y), respectively. In all of the examples it is assumed that the STUN Server does not have a
secondary address/port and thus the CHANGED-ADDRESS attribute in the Binding Response (which need
not be used by the CPE) contains its primary address/port, (A3, P3).

Figure 12 shows the periodic binding discovery and binding maintenance flows where the CPE sends the
Binding Request from the primary source port and includes the CONNECTION-REQUEST-BINDING and
(if a Username had been set) USERNAME attributes. In this example it is assumed that the STUN Server
has not chosen to authenticate the request.

(A1, P1) (A1, P1) (A3, P3)
(A1, P2) (AL, P2 ACS/
CPE Gateway STUN Server
From (A1, P1) > BINDING-REQUEST (CONNECTION-REQUEST- >
To (A3, P3) BINDING : USERNAME)
BINDING-RESPONSE (MAPPED-ADDRESS=AL'P1' : From (A3, P3)
B SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3) To (AL, PL)

Figure 12 — Binding discovery / maintenance from the primary source port

Figure 13 shows a Binding Request sent by the CPE from its secondary source port for the purpose of
discovering whether or not the primary binding has timed out in the NAT gateway. In this case the Binding
Request does not include the CONNECTION-REQUEST-BINDING attribute since it is not sent from the
primary source port. The last leg of the exchange (shown in grey) will not occur if the primary binding has
timed out.

(A1, P1) (A1', P1") (A3, P3)
(A1, P2) (AL, P2) ACS/
CPE Gateway STUN Server
From (A1, P2) > BINDING-REQUEST (RESPONSE-ADDRESS=A1', P1') >
To (A3, P3)
BINDING-RESPONSE (MAPPED-ADDRESS=A1',P2" : From (A3, P3)
¢ SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3 - To (AL, PL)
REFLECTED-FROM=A1',P2")

Figure 13 — Binding Request from secondary source port for binding timeout discovery

December 2007 © The Broadband Forum. All rights reserved. 136

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Figure 14 shows a Binding Change notification where the STUN Server has chosen to make use of the
STUN-based approach (see section G.2.2.2.1), and therefore authenticates the Binding Request prior to
storing the information associating the Username with the current binding address and port.

(A1, P1) (A1, P1') (A3, P3)
(A1, P2) (AL, P2) ACS /
CPE Gateway STUN Server
From (AL, P1) > BINDING-REQUEST (CONNECTION-REQUEST- >
To (A3, P3) BINDING : BINDING-CHANGE : USERNAME)
< < BINDING-ERROR-RESPONSE (401) From (A3, P3)
To (AL, P1Y)
From (A1, P1) BINDING-REQUEST (CONNECTION-REQUEST-
To (A3, P3) > BINDING : BINDING-CHANGE : USERNAME : >
MSG-INTEGRITY) _
Associate
Username
with
(A1, P1)
BINDING-RESPONSE (MAPPED-ADDRESS=A1',P1' : From (A3, P3)
B ¢ SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3 : To (AL", P1)
MSG-INTEGRITY)

Figure 14 — Binding change notification authenticated by the ACS

Figure 15 shows a Binding Change notification where the STUN Server has chosen to make use of the
Notification-based approach (see section G.2.2.2.2), and therefore does not need to authenticate the
Binding Request since the ACS instead uses CPE WAN Management Protocol Naotification to update the
binding information.

(A1, P1) (A1, P1) (A3, P3)
(A1, P2) (AL, P2) ACS /
CPE Gateway STUN Server
From (A1, P1) > BINDING-REQUEST (CONNECTION-REQUEST- >
To (A3, P3) BINDING : BINDING-CHANGE : USERNAME)
BINDING-RESPONSE (MAPPED-ADDRESS=AL'P1' : From (A3, P3)
B SOURCE-ADDRESS=A3,P3 : CHANGED-ADDRESS=A3,P3) To (AL, PL)

Figure 15 — Binding change notification not authenticated by the ACS

December 2007 © The Broadband Forum. All rights reserved. 137

CPE WAN Management Protocol v1.1 TR-069 Issue 1 Amendment 2

Figure 16 shows a UDP Connection Request message sent to the CPE to initiate a CPE WAN Management
Protocol session. In this example, the STUN Server sends the identical UDP Connection Request multiple
times to improve the likelihood of successful reception by the CPE.

(A1, P1) (AL, P1) (A3, P3)
(A1, P2) (AL, P2 ACS/
CPE Gateway STUN Server
< < UDP Connection Request From (A3, P3)
o To (AL, P1)
< < UDP Connection Request From (A3, P3)
To (A1, P1Y)

Figure 16 — UDP Connection Request

G.3 Security Considerations
The following security considerations associated with the procedures defined in this Annex are identified:

e The STUN specification describes several potential attacks using the STUN mechanism. The
reader is referred to section 12 of RFC 3489 [21] for a detailed description of these potential
attacks and the associated risk.

e Because binding changes will result in actions required by the ACS—authentication of a CPE, and
subsequent database update, and potentially establishment of a CPE WAN Management Protocol
session over which to receive an Inform—attacks that can cause frequent changes to the NAT
binding could result in an increased burden on the ACS. The ACS can set a minimum limit on the
rate of Notifications on binding changes if Active Notification is used. However, there is a
tradeoff between the maximum Notification rate and the length of time for which the ACS might
not be able to send Connection Requests to the CPE due to out-of-date information.

December 2007 © The Broadband Forum. All rights reserved. 138

